| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvriotaw | Structured version Visualization version GIF version | ||
| Description: Change bound variable in a restricted description binder. Version of cbvriota 7380 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by NM, 18-Mar-2013.) Avoid ax-13 2377. (Revised by GG, 26-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvriotaw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvriotaw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvriotaw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvriotaw | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2818 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
| 2 | sbequ12 2252 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑))) |
| 4 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 5 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 | |
| 6 | nfs1v 2157 | . . . . 5 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 7 | 5, 6 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) |
| 8 | 3, 4, 7 | cbviotaw 6496 | . . 3 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = (℩𝑧(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) |
| 9 | eleq1w 2818 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 10 | cbvriotaw.2 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
| 11 | cbvriotaw.3 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 12 | 10, 11 | sbhypf 3528 | . . . . 5 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ 𝜓)) |
| 13 | 9, 12 | anbi12d 632 | . . . 4 ⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 14 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐴 | |
| 15 | cbvriotaw.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 16 | 15 | nfsbv 2331 | . . . . 5 ⊢ Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
| 17 | 14, 16 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑦(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) |
| 18 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑧(𝑦 ∈ 𝐴 ∧ 𝜓) | |
| 19 | 13, 17, 18 | cbviotaw 6496 | . . 3 ⊢ (℩𝑧(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 20 | 8, 19 | eqtri 2759 | . 2 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 21 | df-riota 7367 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 22 | df-riota 7367 | . 2 ⊢ (℩𝑦 ∈ 𝐴 𝜓) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 23 | 20, 21, 22 | 3eqtr4i 2769 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 [wsb 2065 ∈ wcel 2109 ℩cio 6487 ℩crio 7366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-sn 4607 df-uni 4889 df-iota 6489 df-riota 7367 |
| This theorem is referenced by: disjinfi 45183 |
| Copyright terms: Public domain | W3C validator |