MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvriotaw Structured version   Visualization version   GIF version

Theorem cbvriotaw 7379
Description: Change bound variable in a restricted description binder. Version of cbvriota 7384 with a disjoint variable condition, which does not require ax-13 2366. (Contributed by NM, 18-Mar-2013.) Avoid ax-13 2366. (Revised by Gino Giotto, 26-Jan-2024.)
Hypotheses
Ref Expression
cbvriotaw.1 𝑦𝜑
cbvriotaw.2 𝑥𝜓
cbvriotaw.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvriotaw (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvriotaw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2811 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2 sbequ12 2236 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
31, 2anbi12d 630 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝜑) ↔ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)))
4 nfv 1910 . . . 4 𝑧(𝑥𝐴𝜑)
5 nfv 1910 . . . . 5 𝑥 𝑧𝐴
6 nfs1v 2146 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
75, 6nfan 1895 . . . 4 𝑥(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
83, 4, 7cbviotaw 6501 . . 3 (℩𝑥(𝑥𝐴𝜑)) = (℩𝑧(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑))
9 eleq1w 2811 . . . . 5 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
10 cbvriotaw.2 . . . . . 6 𝑥𝜓
11 cbvriotaw.3 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
1210, 11sbhypf 3534 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
139, 12anbi12d 630 . . . 4 (𝑧 = 𝑦 → ((𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦𝐴𝜓)))
14 nfv 1910 . . . . 5 𝑦 𝑧𝐴
15 cbvriotaw.1 . . . . . 6 𝑦𝜑
1615nfsbv 2318 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
1714, 16nfan 1895 . . . 4 𝑦(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
18 nfv 1910 . . . 4 𝑧(𝑦𝐴𝜓)
1913, 17, 18cbviotaw 6501 . . 3 (℩𝑧(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)) = (℩𝑦(𝑦𝐴𝜓))
208, 19eqtri 2755 . 2 (℩𝑥(𝑥𝐴𝜑)) = (℩𝑦(𝑦𝐴𝜓))
21 df-riota 7370 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
22 df-riota 7370 . 2 (𝑦𝐴 𝜓) = (℩𝑦(𝑦𝐴𝜓))
2320, 21, 223eqtr4i 2765 1 (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wnf 1778  [wsb 2060  wcel 2099  cio 6492  crio 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3471  df-in 3951  df-ss 3961  df-sn 4625  df-uni 4904  df-iota 6494  df-riota 7370
This theorem is referenced by:  cbvriotavwOLD  7381  disjinfi  44488
  Copyright terms: Public domain W3C validator