Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemesner Structured version   Visualization version   GIF version

Theorem cdlemesner 40290
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. (Contributed by NM, 13-Nov-2012.)
Hypotheses
Ref Expression
cdlemesner.l = (le‘𝐾)
cdlemesner.j = (join‘𝐾)
cdlemesner.a 𝐴 = (Atoms‘𝐾)
cdlemesner.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdlemesner ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆𝑅)

Proof of Theorem cdlemesner
StepHypRef Expression
1 nbrne2 5127 . . 3 ((𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑅𝑆)
213ad2ant3 1135 . 2 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅𝑆)
32necomd 2980 1 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  lecple 17227  joincjn 18272  Atomscatm 39256  HLchlt 39343  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108
This theorem is referenced by:  cdlemeda  40292
  Copyright terms: Public domain W3C validator