Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemesner Structured version   Visualization version   GIF version

Theorem cdlemesner 37608
 Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. (Contributed by NM, 13-Nov-2012.)
Hypotheses
Ref Expression
cdlemesner.l = (le‘𝐾)
cdlemesner.j = (join‘𝐾)
cdlemesner.a 𝐴 = (Atoms‘𝐾)
cdlemesner.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdlemesner ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆𝑅)

Proof of Theorem cdlemesner
StepHypRef Expression
1 nbrne2 5050 . . 3 ((𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑅𝑆)
213ad2ant3 1132 . 2 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅𝑆)
32necomd 3042 1 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆𝑅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987   class class class wbr 5030  ‘cfv 6324  (class class class)co 7135  lecple 16566  joincjn 17548  Atomscatm 36575  HLchlt 36662  LHypclh 37296 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ne 2988  df-v 3443  df-un 3886  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031 This theorem is referenced by:  cdlemeda  37610
 Copyright terms: Public domain W3C validator