![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemesner | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. (Contributed by NM, 13-Nov-2012.) |
Ref | Expression |
---|---|
cdlemesner.l | ⊢ ≤ = (le‘𝐾) |
cdlemesner.j | ⊢ ∨ = (join‘𝐾) |
cdlemesner.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemesner.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
cdlemesner | ⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ≠ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbrne2 4976 | . . 3 ⊢ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑅 ≠ 𝑆) | |
2 | 1 | 3ad2ant3 1126 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ≠ 𝑆) |
3 | 2 | necomd 3037 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ≠ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1078 = wceq 1520 ∈ wcel 2079 ≠ wne 2982 class class class wbr 4956 ‘cfv 6217 (class class class)co 7007 lecple 16389 joincjn 17371 Atomscatm 35880 HLchlt 35967 LHypclh 36601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-ext 2767 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-rab 3112 df-v 3434 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-op 4473 df-br 4957 |
This theorem is referenced by: cdlemeda 36915 |
Copyright terms: Public domain | W3C validator |