Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemesner Structured version   Visualization version   GIF version

Theorem cdlemesner 39825
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. (Contributed by NM, 13-Nov-2012.)
Hypotheses
Ref Expression
cdlemesner.l ≀ = (leβ€˜πΎ)
cdlemesner.j ∨ = (joinβ€˜πΎ)
cdlemesner.a 𝐴 = (Atomsβ€˜πΎ)
cdlemesner.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
cdlemesner ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑆 β‰  𝑅)

Proof of Theorem cdlemesner
StepHypRef Expression
1 nbrne2 5163 . . 3 ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑅 β‰  𝑆)
213ad2ant3 1132 . 2 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 β‰  𝑆)
32necomd 2986 1 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑆 β‰  𝑅)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930   class class class wbr 5143  β€˜cfv 6543  (class class class)co 7416  lecple 17239  joincjn 18302  Atomscatm 38791  HLchlt 38878  LHypclh 39513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-ss 3956  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5144
This theorem is referenced by:  cdlemeda  39827
  Copyright terms: Public domain W3C validator