Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemesner | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. (Contributed by NM, 13-Nov-2012.) |
Ref | Expression |
---|---|
cdlemesner.l | ⊢ ≤ = (le‘𝐾) |
cdlemesner.j | ⊢ ∨ = (join‘𝐾) |
cdlemesner.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemesner.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
cdlemesner | ⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ≠ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbrne2 5073 | . . 3 ⊢ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑅 ≠ 𝑆) | |
2 | 1 | 3ad2ant3 1137 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ≠ 𝑆) |
3 | 2 | necomd 2996 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ≠ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 lecple 16809 joincjn 17818 Atomscatm 37014 HLchlt 37101 LHypclh 37735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 |
This theorem is referenced by: cdlemeda 38049 |
Copyright terms: Public domain | W3C validator |