![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemesner | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. (Contributed by NM, 13-Nov-2012.) |
Ref | Expression |
---|---|
cdlemesner.l | β’ β€ = (leβπΎ) |
cdlemesner.j | β’ β¨ = (joinβπΎ) |
cdlemesner.a | β’ π΄ = (AtomsβπΎ) |
cdlemesner.h | β’ π» = (LHypβπΎ) |
Ref | Expression |
---|---|
cdlemesner | β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄) β§ (π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbrne2 5168 | . . 3 β’ ((π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β π β π) | |
2 | 1 | 3ad2ant3 1135 | . 2 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄) β§ (π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π) |
3 | 2 | necomd 2996 | 1 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄) β§ (π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 class class class wbr 5148 βcfv 6543 (class class class)co 7408 lecple 17203 joincjn 18263 Atomscatm 38128 HLchlt 38215 LHypclh 38850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 |
This theorem is referenced by: cdlemeda 39164 |
Copyright terms: Public domain | W3C validator |