Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemesner Structured version   Visualization version   GIF version

Theorem cdlemesner 38805
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. (Contributed by NM, 13-Nov-2012.)
Hypotheses
Ref Expression
cdlemesner.l ≀ = (leβ€˜πΎ)
cdlemesner.j ∨ = (joinβ€˜πΎ)
cdlemesner.a 𝐴 = (Atomsβ€˜πΎ)
cdlemesner.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
cdlemesner ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑆 β‰  𝑅)

Proof of Theorem cdlemesner
StepHypRef Expression
1 nbrne2 5126 . . 3 ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑅 β‰  𝑆)
213ad2ant3 1136 . 2 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 β‰  𝑆)
32necomd 2996 1 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑆 β‰  𝑅)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2940   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  lecple 17145  joincjn 18205  Atomscatm 37771  HLchlt 37858  LHypclh 38493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107
This theorem is referenced by:  cdlemeda  38807
  Copyright terms: Public domain W3C validator