| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbrne2 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
| Ref | Expression |
|---|---|
| nbrne2 | ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5122 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 2 | 1 | biimpcd 249 | . . 3 ⊢ (𝐴𝑅𝐶 → (𝐴 = 𝐵 → 𝐵𝑅𝐶)) |
| 3 | 2 | necon3bd 2946 | . 2 ⊢ (𝐴𝑅𝐶 → (¬ 𝐵𝑅𝐶 → 𝐴 ≠ 𝐵)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2932 class class class wbr 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 |
| This theorem is referenced by: frfi 9293 ablsimpgfindlem1 20090 ablsimpgfindlem2 20091 hl2at 39424 2atjm 39464 atbtwn 39465 atbtwnexOLDN 39466 atbtwnex 39467 dalem21 39713 dalem23 39715 dalem27 39718 dalem54 39745 2llnma1b 39805 lhpexle1lem 40026 lhpexle3lem 40030 lhp2at0nle 40054 4atexlemunv 40085 4atexlemnclw 40089 4atexlemcnd 40091 cdlemc5 40214 cdleme0b 40231 cdleme0c 40232 cdleme0fN 40237 cdleme01N 40240 cdleme0ex2N 40243 cdleme3b 40248 cdleme3c 40249 cdleme3g 40253 cdleme3h 40254 cdleme7aa 40261 cdleme7b 40263 cdleme7c 40264 cdleme7d 40265 cdleme7e 40266 cdleme7ga 40267 cdleme11fN 40283 cdlemesner 40315 cdlemednpq 40318 cdleme19a 40322 cdleme19c 40324 cdleme21c 40346 cdleme21ct 40348 cdleme22cN 40361 cdleme22f2 40366 cdleme22g 40367 cdleme41sn3aw 40493 cdlemeg46rgv 40547 cdlemeg46req 40548 cdlemf1 40580 cdlemg27b 40715 cdlemg33b0 40720 cdlemg33c0 40721 cdlemh 40836 cdlemk14 40873 dia2dimlem1 41083 |
| Copyright terms: Public domain | W3C validator |