![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbrne2 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
Ref | Expression |
---|---|
nbrne2 | ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5151 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
2 | 1 | biimpcd 249 | . . 3 ⊢ (𝐴𝑅𝐶 → (𝐴 = 𝐵 → 𝐵𝑅𝐶)) |
3 | 2 | necon3bd 2952 | . 2 ⊢ (𝐴𝑅𝐶 → (¬ 𝐵𝑅𝐶 → 𝐴 ≠ 𝐵)) |
4 | 3 | imp 406 | 1 ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ≠ wne 2938 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 |
This theorem is referenced by: frfi 9319 ablsimpgfindlem1 20142 ablsimpgfindlem2 20143 hl2at 39388 2atjm 39428 atbtwn 39429 atbtwnexOLDN 39430 atbtwnex 39431 dalem21 39677 dalem23 39679 dalem27 39682 dalem54 39709 2llnma1b 39769 lhpexle1lem 39990 lhpexle3lem 39994 lhp2at0nle 40018 4atexlemunv 40049 4atexlemnclw 40053 4atexlemcnd 40055 cdlemc5 40178 cdleme0b 40195 cdleme0c 40196 cdleme0fN 40201 cdleme01N 40204 cdleme0ex2N 40207 cdleme3b 40212 cdleme3c 40213 cdleme3g 40217 cdleme3h 40218 cdleme7aa 40225 cdleme7b 40227 cdleme7c 40228 cdleme7d 40229 cdleme7e 40230 cdleme7ga 40231 cdleme11fN 40247 cdlemesner 40279 cdlemednpq 40282 cdleme19a 40286 cdleme19c 40288 cdleme21c 40310 cdleme21ct 40312 cdleme22cN 40325 cdleme22f2 40330 cdleme22g 40331 cdleme41sn3aw 40457 cdlemeg46rgv 40511 cdlemeg46req 40512 cdlemf1 40544 cdlemg27b 40679 cdlemg33b0 40684 cdlemg33c0 40685 cdlemh 40800 cdlemk14 40837 dia2dimlem1 41047 |
Copyright terms: Public domain | W3C validator |