| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbrne2 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
| Ref | Expression |
|---|---|
| nbrne2 | ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5092 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 2 | 1 | biimpcd 249 | . . 3 ⊢ (𝐴𝑅𝐶 → (𝐴 = 𝐵 → 𝐵𝑅𝐶)) |
| 3 | 2 | necon3bd 2942 | . 2 ⊢ (𝐴𝑅𝐶 → (¬ 𝐵𝑅𝐶 → 𝐴 ≠ 𝐵)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ≠ wne 2928 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: frfi 9169 ablsimpgfindlem1 20021 ablsimpgfindlem2 20022 hl2at 39514 2atjm 39554 atbtwn 39555 atbtwnexOLDN 39556 atbtwnex 39557 dalem21 39803 dalem23 39805 dalem27 39808 dalem54 39835 2llnma1b 39895 lhpexle1lem 40116 lhpexle3lem 40120 lhp2at0nle 40144 4atexlemunv 40175 4atexlemnclw 40179 4atexlemcnd 40181 cdlemc5 40304 cdleme0b 40321 cdleme0c 40322 cdleme0fN 40327 cdleme01N 40330 cdleme0ex2N 40333 cdleme3b 40338 cdleme3c 40339 cdleme3g 40343 cdleme3h 40344 cdleme7aa 40351 cdleme7b 40353 cdleme7c 40354 cdleme7d 40355 cdleme7e 40356 cdleme7ga 40357 cdleme11fN 40373 cdlemesner 40405 cdlemednpq 40408 cdleme19a 40412 cdleme19c 40414 cdleme21c 40436 cdleme21ct 40438 cdleme22cN 40451 cdleme22f2 40456 cdleme22g 40457 cdleme41sn3aw 40583 cdlemeg46rgv 40637 cdlemeg46req 40638 cdlemf1 40670 cdlemg27b 40805 cdlemg33b0 40810 cdlemg33c0 40811 cdlemh 40926 cdlemk14 40963 dia2dimlem1 41173 |
| Copyright terms: Public domain | W3C validator |