| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbrne2 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
| Ref | Expression |
|---|---|
| nbrne2 | ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5105 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 2 | 1 | biimpcd 249 | . . 3 ⊢ (𝐴𝑅𝐶 → (𝐴 = 𝐵 → 𝐵𝑅𝐶)) |
| 3 | 2 | necon3bd 2939 | . 2 ⊢ (𝐴𝑅𝐶 → (¬ 𝐵𝑅𝐶 → 𝐴 ≠ 𝐵)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2925 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 |
| This theorem is referenced by: frfi 9208 ablsimpgfindlem1 20023 ablsimpgfindlem2 20024 hl2at 39392 2atjm 39432 atbtwn 39433 atbtwnexOLDN 39434 atbtwnex 39435 dalem21 39681 dalem23 39683 dalem27 39686 dalem54 39713 2llnma1b 39773 lhpexle1lem 39994 lhpexle3lem 39998 lhp2at0nle 40022 4atexlemunv 40053 4atexlemnclw 40057 4atexlemcnd 40059 cdlemc5 40182 cdleme0b 40199 cdleme0c 40200 cdleme0fN 40205 cdleme01N 40208 cdleme0ex2N 40211 cdleme3b 40216 cdleme3c 40217 cdleme3g 40221 cdleme3h 40222 cdleme7aa 40229 cdleme7b 40231 cdleme7c 40232 cdleme7d 40233 cdleme7e 40234 cdleme7ga 40235 cdleme11fN 40251 cdlemesner 40283 cdlemednpq 40286 cdleme19a 40290 cdleme19c 40292 cdleme21c 40314 cdleme21ct 40316 cdleme22cN 40329 cdleme22f2 40334 cdleme22g 40335 cdleme41sn3aw 40461 cdlemeg46rgv 40515 cdlemeg46req 40516 cdlemf1 40548 cdlemg27b 40683 cdlemg33b0 40688 cdlemg33c0 40689 cdlemh 40804 cdlemk14 40841 dia2dimlem1 41051 |
| Copyright terms: Public domain | W3C validator |