| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbrne2 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
| Ref | Expression |
|---|---|
| nbrne2 | ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5113 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 2 | 1 | biimpcd 249 | . . 3 ⊢ (𝐴𝑅𝐶 → (𝐴 = 𝐵 → 𝐵𝑅𝐶)) |
| 3 | 2 | necon3bd 2940 | . 2 ⊢ (𝐴𝑅𝐶 → (¬ 𝐵𝑅𝐶 → 𝐴 ≠ 𝐵)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2926 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 |
| This theorem is referenced by: frfi 9239 ablsimpgfindlem1 20046 ablsimpgfindlem2 20047 hl2at 39406 2atjm 39446 atbtwn 39447 atbtwnexOLDN 39448 atbtwnex 39449 dalem21 39695 dalem23 39697 dalem27 39700 dalem54 39727 2llnma1b 39787 lhpexle1lem 40008 lhpexle3lem 40012 lhp2at0nle 40036 4atexlemunv 40067 4atexlemnclw 40071 4atexlemcnd 40073 cdlemc5 40196 cdleme0b 40213 cdleme0c 40214 cdleme0fN 40219 cdleme01N 40222 cdleme0ex2N 40225 cdleme3b 40230 cdleme3c 40231 cdleme3g 40235 cdleme3h 40236 cdleme7aa 40243 cdleme7b 40245 cdleme7c 40246 cdleme7d 40247 cdleme7e 40248 cdleme7ga 40249 cdleme11fN 40265 cdlemesner 40297 cdlemednpq 40300 cdleme19a 40304 cdleme19c 40306 cdleme21c 40328 cdleme21ct 40330 cdleme22cN 40343 cdleme22f2 40348 cdleme22g 40349 cdleme41sn3aw 40475 cdlemeg46rgv 40529 cdlemeg46req 40530 cdlemf1 40562 cdlemg27b 40697 cdlemg33b0 40702 cdlemg33c0 40703 cdlemh 40818 cdlemk14 40855 dia2dimlem1 41065 |
| Copyright terms: Public domain | W3C validator |