Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbrne2 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
Ref | Expression |
---|---|
nbrne2 | ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5077 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
2 | 1 | biimpcd 248 | . . 3 ⊢ (𝐴𝑅𝐶 → (𝐴 = 𝐵 → 𝐵𝑅𝐶)) |
3 | 2 | necon3bd 2957 | . 2 ⊢ (𝐴𝑅𝐶 → (¬ 𝐵𝑅𝐶 → 𝐴 ≠ 𝐵)) |
4 | 3 | imp 407 | 1 ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ≠ wne 2943 class class class wbr 5074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 |
This theorem is referenced by: frfi 9059 ablsimpgfindlem1 19710 ablsimpgfindlem2 19711 hl2at 37419 2atjm 37459 atbtwn 37460 atbtwnexOLDN 37461 atbtwnex 37462 dalem21 37708 dalem23 37710 dalem27 37713 dalem54 37740 2llnma1b 37800 lhpexle1lem 38021 lhpexle3lem 38025 lhp2at0nle 38049 4atexlemunv 38080 4atexlemnclw 38084 4atexlemcnd 38086 cdlemc5 38209 cdleme0b 38226 cdleme0c 38227 cdleme0fN 38232 cdleme01N 38235 cdleme0ex2N 38238 cdleme3b 38243 cdleme3c 38244 cdleme3g 38248 cdleme3h 38249 cdleme7aa 38256 cdleme7b 38258 cdleme7c 38259 cdleme7d 38260 cdleme7e 38261 cdleme7ga 38262 cdleme11fN 38278 cdlemesner 38310 cdlemednpq 38313 cdleme19a 38317 cdleme19c 38319 cdleme21c 38341 cdleme21ct 38343 cdleme22cN 38356 cdleme22f2 38361 cdleme22g 38362 cdleme41sn3aw 38488 cdlemeg46rgv 38542 cdlemeg46req 38543 cdlemf1 38575 cdlemg27b 38710 cdlemg33b0 38715 cdlemg33c0 38716 cdlemh 38831 cdlemk14 38868 dia2dimlem1 39078 |
Copyright terms: Public domain | W3C validator |