| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbrne2 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
| Ref | Expression |
|---|---|
| nbrne2 | ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5110 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 2 | 1 | biimpcd 249 | . . 3 ⊢ (𝐴𝑅𝐶 → (𝐴 = 𝐵 → 𝐵𝑅𝐶)) |
| 3 | 2 | necon3bd 2939 | . 2 ⊢ (𝐴𝑅𝐶 → (¬ 𝐵𝑅𝐶 → 𝐴 ≠ 𝐵)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2925 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 |
| This theorem is referenced by: frfi 9232 ablsimpgfindlem1 20039 ablsimpgfindlem2 20040 hl2at 39399 2atjm 39439 atbtwn 39440 atbtwnexOLDN 39441 atbtwnex 39442 dalem21 39688 dalem23 39690 dalem27 39693 dalem54 39720 2llnma1b 39780 lhpexle1lem 40001 lhpexle3lem 40005 lhp2at0nle 40029 4atexlemunv 40060 4atexlemnclw 40064 4atexlemcnd 40066 cdlemc5 40189 cdleme0b 40206 cdleme0c 40207 cdleme0fN 40212 cdleme01N 40215 cdleme0ex2N 40218 cdleme3b 40223 cdleme3c 40224 cdleme3g 40228 cdleme3h 40229 cdleme7aa 40236 cdleme7b 40238 cdleme7c 40239 cdleme7d 40240 cdleme7e 40241 cdleme7ga 40242 cdleme11fN 40258 cdlemesner 40290 cdlemednpq 40293 cdleme19a 40297 cdleme19c 40299 cdleme21c 40321 cdleme21ct 40323 cdleme22cN 40336 cdleme22f2 40341 cdleme22g 40342 cdleme41sn3aw 40468 cdlemeg46rgv 40522 cdlemeg46req 40523 cdlemf1 40555 cdlemg27b 40690 cdlemg33b0 40695 cdlemg33c0 40696 cdlemh 40811 cdlemk14 40848 dia2dimlem1 41058 |
| Copyright terms: Public domain | W3C validator |