Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbrne2 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
Ref | Expression |
---|---|
nbrne2 | ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5082 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
2 | 1 | biimpcd 248 | . . 3 ⊢ (𝐴𝑅𝐶 → (𝐴 = 𝐵 → 𝐵𝑅𝐶)) |
3 | 2 | necon3bd 2959 | . 2 ⊢ (𝐴𝑅𝐶 → (¬ 𝐵𝑅𝐶 → 𝐴 ≠ 𝐵)) |
4 | 3 | imp 407 | 1 ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1542 ≠ wne 2945 class class class wbr 5079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 |
This theorem is referenced by: frfi 9035 ablsimpgfindlem1 19706 ablsimpgfindlem2 19707 hl2at 37413 2atjm 37453 atbtwn 37454 atbtwnexOLDN 37455 atbtwnex 37456 dalem21 37702 dalem23 37704 dalem27 37707 dalem54 37734 2llnma1b 37794 lhpexle1lem 38015 lhpexle3lem 38019 lhp2at0nle 38043 4atexlemunv 38074 4atexlemnclw 38078 4atexlemcnd 38080 cdlemc5 38203 cdleme0b 38220 cdleme0c 38221 cdleme0fN 38226 cdleme01N 38229 cdleme0ex2N 38232 cdleme3b 38237 cdleme3c 38238 cdleme3g 38242 cdleme3h 38243 cdleme7aa 38250 cdleme7b 38252 cdleme7c 38253 cdleme7d 38254 cdleme7e 38255 cdleme7ga 38256 cdleme11fN 38272 cdlemesner 38304 cdlemednpq 38307 cdleme19a 38311 cdleme19c 38313 cdleme21c 38335 cdleme21ct 38337 cdleme22cN 38350 cdleme22f2 38355 cdleme22g 38356 cdleme41sn3aw 38482 cdlemeg46rgv 38536 cdlemeg46req 38537 cdlemf1 38569 cdlemg27b 38704 cdlemg33b0 38709 cdlemg33c0 38710 cdlemh 38825 cdlemk14 38862 dia2dimlem1 39072 |
Copyright terms: Public domain | W3C validator |