Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbrne2 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
Ref | Expression |
---|---|
nbrne2 | ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5073 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
2 | 1 | biimpcd 248 | . . 3 ⊢ (𝐴𝑅𝐶 → (𝐴 = 𝐵 → 𝐵𝑅𝐶)) |
3 | 2 | necon3bd 2956 | . 2 ⊢ (𝐴𝑅𝐶 → (¬ 𝐵𝑅𝐶 → 𝐴 ≠ 𝐵)) |
4 | 3 | imp 406 | 1 ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ≠ wne 2942 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 |
This theorem is referenced by: frfi 8989 ablsimpgfindlem1 19625 ablsimpgfindlem2 19626 hl2at 37346 2atjm 37386 atbtwn 37387 atbtwnexOLDN 37388 atbtwnex 37389 dalem21 37635 dalem23 37637 dalem27 37640 dalem54 37667 2llnma1b 37727 lhpexle1lem 37948 lhpexle3lem 37952 lhp2at0nle 37976 4atexlemunv 38007 4atexlemnclw 38011 4atexlemcnd 38013 cdlemc5 38136 cdleme0b 38153 cdleme0c 38154 cdleme0fN 38159 cdleme01N 38162 cdleme0ex2N 38165 cdleme3b 38170 cdleme3c 38171 cdleme3g 38175 cdleme3h 38176 cdleme7aa 38183 cdleme7b 38185 cdleme7c 38186 cdleme7d 38187 cdleme7e 38188 cdleme7ga 38189 cdleme11fN 38205 cdlemesner 38237 cdlemednpq 38240 cdleme19a 38244 cdleme19c 38246 cdleme21c 38268 cdleme21ct 38270 cdleme22cN 38283 cdleme22f2 38288 cdleme22g 38289 cdleme41sn3aw 38415 cdlemeg46rgv 38469 cdlemeg46req 38470 cdlemf1 38502 cdlemg27b 38637 cdlemg33b0 38642 cdlemg33c0 38643 cdlemh 38758 cdlemk14 38795 dia2dimlem1 39005 |
Copyright terms: Public domain | W3C validator |