![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbrne2 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
Ref | Expression |
---|---|
nbrne2 | ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5169 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
2 | 1 | biimpcd 249 | . . 3 ⊢ (𝐴𝑅𝐶 → (𝐴 = 𝐵 → 𝐵𝑅𝐶)) |
3 | 2 | necon3bd 2960 | . 2 ⊢ (𝐴𝑅𝐶 → (¬ 𝐵𝑅𝐶 → 𝐴 ≠ 𝐵)) |
4 | 3 | imp 406 | 1 ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ≠ wne 2946 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: frfi 9349 ablsimpgfindlem1 20151 ablsimpgfindlem2 20152 hl2at 39362 2atjm 39402 atbtwn 39403 atbtwnexOLDN 39404 atbtwnex 39405 dalem21 39651 dalem23 39653 dalem27 39656 dalem54 39683 2llnma1b 39743 lhpexle1lem 39964 lhpexle3lem 39968 lhp2at0nle 39992 4atexlemunv 40023 4atexlemnclw 40027 4atexlemcnd 40029 cdlemc5 40152 cdleme0b 40169 cdleme0c 40170 cdleme0fN 40175 cdleme01N 40178 cdleme0ex2N 40181 cdleme3b 40186 cdleme3c 40187 cdleme3g 40191 cdleme3h 40192 cdleme7aa 40199 cdleme7b 40201 cdleme7c 40202 cdleme7d 40203 cdleme7e 40204 cdleme7ga 40205 cdleme11fN 40221 cdlemesner 40253 cdlemednpq 40256 cdleme19a 40260 cdleme19c 40262 cdleme21c 40284 cdleme21ct 40286 cdleme22cN 40299 cdleme22f2 40304 cdleme22g 40305 cdleme41sn3aw 40431 cdlemeg46rgv 40485 cdlemeg46req 40486 cdlemf1 40518 cdlemg27b 40653 cdlemg33b0 40658 cdlemg33c0 40659 cdlemh 40774 cdlemk14 40811 dia2dimlem1 41021 |
Copyright terms: Public domain | W3C validator |