| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbrne2 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
| Ref | Expression |
|---|---|
| nbrne2 | ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5095 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 2 | 1 | biimpcd 249 | . . 3 ⊢ (𝐴𝑅𝐶 → (𝐴 = 𝐵 → 𝐵𝑅𝐶)) |
| 3 | 2 | necon3bd 2939 | . 2 ⊢ (𝐴𝑅𝐶 → (¬ 𝐵𝑅𝐶 → 𝐴 ≠ 𝐵)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2925 class class class wbr 5092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 |
| This theorem is referenced by: frfi 9174 ablsimpgfindlem1 19988 ablsimpgfindlem2 19989 hl2at 39394 2atjm 39434 atbtwn 39435 atbtwnexOLDN 39436 atbtwnex 39437 dalem21 39683 dalem23 39685 dalem27 39688 dalem54 39715 2llnma1b 39775 lhpexle1lem 39996 lhpexle3lem 40000 lhp2at0nle 40024 4atexlemunv 40055 4atexlemnclw 40059 4atexlemcnd 40061 cdlemc5 40184 cdleme0b 40201 cdleme0c 40202 cdleme0fN 40207 cdleme01N 40210 cdleme0ex2N 40213 cdleme3b 40218 cdleme3c 40219 cdleme3g 40223 cdleme3h 40224 cdleme7aa 40231 cdleme7b 40233 cdleme7c 40234 cdleme7d 40235 cdleme7e 40236 cdleme7ga 40237 cdleme11fN 40253 cdlemesner 40285 cdlemednpq 40288 cdleme19a 40292 cdleme19c 40294 cdleme21c 40316 cdleme21ct 40318 cdleme22cN 40331 cdleme22f2 40336 cdleme22g 40337 cdleme41sn3aw 40463 cdlemeg46rgv 40517 cdlemeg46req 40518 cdlemf1 40550 cdlemg27b 40685 cdlemg33b0 40690 cdlemg33c0 40691 cdlemh 40806 cdlemk14 40843 dia2dimlem1 41053 |
| Copyright terms: Public domain | W3C validator |