Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemedb Structured version   Visualization version   GIF version

Theorem cdlemedb 37319
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. 𝐷 represents s2. (Contributed by NM, 20-Nov-2012.)
Hypotheses
Ref Expression
cdlemeda.l = (le‘𝐾)
cdlemeda.j = (join‘𝐾)
cdlemeda.m = (meet‘𝐾)
cdlemeda.a 𝐴 = (Atoms‘𝐾)
cdlemeda.h 𝐻 = (LHyp‘𝐾)
cdlemeda.d 𝐷 = ((𝑅 𝑆) 𝑊)
cdlemedb.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
cdlemedb (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → 𝐷𝐵)

Proof of Theorem cdlemedb
StepHypRef Expression
1 cdlemeda.d . 2 𝐷 = ((𝑅 𝑆) 𝑊)
2 hllat 36385 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
32ad2antrr 722 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ Lat)
4 simpll 763 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ HL)
5 simprl 767 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → 𝑅𝐴)
6 simprr 769 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
7 cdlemedb.b . . . . 5 𝐵 = (Base‘𝐾)
8 cdlemeda.j . . . . 5 = (join‘𝐾)
9 cdlemeda.a . . . . 5 𝐴 = (Atoms‘𝐾)
107, 8, 9hlatjcl 36389 . . . 4 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ 𝐵)
114, 5, 6, 10syl3anc 1365 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → (𝑅 𝑆) ∈ 𝐵)
12 cdlemeda.h . . . . 5 𝐻 = (LHyp‘𝐾)
137, 12lhpbase 37020 . . . 4 (𝑊𝐻𝑊𝐵)
1413ad2antlr 723 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → 𝑊𝐵)
15 cdlemeda.m . . . 4 = (meet‘𝐾)
167, 15latmcl 17657 . . 3 ((𝐾 ∈ Lat ∧ (𝑅 𝑆) ∈ 𝐵𝑊𝐵) → ((𝑅 𝑆) 𝑊) ∈ 𝐵)
173, 11, 14, 16syl3anc 1365 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑅 𝑆) 𝑊) ∈ 𝐵)
181, 17eqeltrid 2922 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → 𝐷𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  cfv 6354  (class class class)co 7150  Basecbs 16478  lecple 16567  joincjn 17549  meetcmee 17550  Latclat 17650  Atomscatm 36285  HLchlt 36372  LHypclh 37006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-lat 17651  df-ats 36289  df-atl 36320  df-cvlat 36344  df-hlat 36373  df-lhyp 37010
This theorem is referenced by:  cdleme20k  37341  cdleme20l2  37343  cdleme20l  37344  cdleme20m  37345
  Copyright terms: Public domain W3C validator