Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemedb | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. 𝐷 represents s2. (Contributed by NM, 20-Nov-2012.) |
Ref | Expression |
---|---|
cdlemeda.l | ⊢ ≤ = (le‘𝐾) |
cdlemeda.j | ⊢ ∨ = (join‘𝐾) |
cdlemeda.m | ⊢ ∧ = (meet‘𝐾) |
cdlemeda.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemeda.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemeda.d | ⊢ 𝐷 = ((𝑅 ∨ 𝑆) ∧ 𝑊) |
cdlemedb.b | ⊢ 𝐵 = (Base‘𝐾) |
Ref | Expression |
---|---|
cdlemedb | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐷 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemeda.d | . 2 ⊢ 𝐷 = ((𝑅 ∨ 𝑆) ∧ 𝑊) | |
2 | hllat 37304 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
3 | 2 | ad2antrr 722 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐾 ∈ Lat) |
4 | simpll 763 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐾 ∈ HL) | |
5 | simprl 767 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑅 ∈ 𝐴) | |
6 | simprr 769 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑆 ∈ 𝐴) | |
7 | cdlemedb.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
8 | cdlemeda.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
9 | cdlemeda.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | 7, 8, 9 | hlatjcl 37308 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑅 ∨ 𝑆) ∈ 𝐵) |
11 | 4, 5, 6, 10 | syl3anc 1369 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑅 ∨ 𝑆) ∈ 𝐵) |
12 | cdlemeda.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
13 | 7, 12 | lhpbase 37939 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
14 | 13 | ad2antlr 723 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑊 ∈ 𝐵) |
15 | cdlemeda.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
16 | 7, 15 | latmcl 18073 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑆) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((𝑅 ∨ 𝑆) ∧ 𝑊) ∈ 𝐵) |
17 | 3, 11, 14, 16 | syl3anc 1369 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑅 ∨ 𝑆) ∧ 𝑊) ∈ 𝐵) |
18 | 1, 17 | eqeltrid 2843 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐷 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 joincjn 17944 meetcmee 17945 Latclat 18064 Atomscatm 37204 HLchlt 37291 LHypclh 37925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-lat 18065 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-lhyp 37929 |
This theorem is referenced by: cdleme20k 38260 cdleme20l2 38262 cdleme20l 38263 cdleme20m 38264 |
Copyright terms: Public domain | W3C validator |