Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemedb Structured version   Visualization version   GIF version

Theorem cdlemedb 39163
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. 𝐷 represents s2. (Contributed by NM, 20-Nov-2012.)
Hypotheses
Ref Expression
cdlemeda.l ≀ = (leβ€˜πΎ)
cdlemeda.j ∨ = (joinβ€˜πΎ)
cdlemeda.m ∧ = (meetβ€˜πΎ)
cdlemeda.a 𝐴 = (Atomsβ€˜πΎ)
cdlemeda.h 𝐻 = (LHypβ€˜πΎ)
cdlemeda.d 𝐷 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
cdlemedb.b 𝐡 = (Baseβ€˜πΎ)
Assertion
Ref Expression
cdlemedb (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝐷 ∈ 𝐡)

Proof of Theorem cdlemedb
StepHypRef Expression
1 cdlemeda.d . 2 𝐷 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
2 hllat 38228 . . . 4 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
32ad2antrr 724 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝐾 ∈ Lat)
4 simpll 765 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝐾 ∈ HL)
5 simprl 769 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝑅 ∈ 𝐴)
6 simprr 771 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝑆 ∈ 𝐴)
7 cdlemedb.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
8 cdlemeda.j . . . . 5 ∨ = (joinβ€˜πΎ)
9 cdlemeda.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
107, 8, 9hlatjcl 38232 . . . 4 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑅 ∨ 𝑆) ∈ 𝐡)
114, 5, 6, 10syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ (𝑅 ∨ 𝑆) ∈ 𝐡)
12 cdlemeda.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
137, 12lhpbase 38864 . . . 4 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ 𝐡)
1413ad2antlr 725 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ π‘Š ∈ 𝐡)
15 cdlemeda.m . . . 4 ∧ = (meetβ€˜πΎ)
167, 15latmcl 18392 . . 3 ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑆) ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ ((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ 𝐡)
173, 11, 14, 16syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ 𝐡)
181, 17eqeltrid 2837 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝐷 ∈ 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  lecple 17203  joincjn 18263  meetcmee 18264  Latclat 18383  Atomscatm 38128  HLchlt 38215  LHypclh 38850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-lat 18384  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-lhyp 38854
This theorem is referenced by:  cdleme20k  39185  cdleme20l2  39187  cdleme20l  39188  cdleme20m  39189
  Copyright terms: Public domain W3C validator