Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemedb Structured version   Visualization version   GIF version

Theorem cdlemedb 39810
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. 𝐷 represents s2. (Contributed by NM, 20-Nov-2012.)
Hypotheses
Ref Expression
cdlemeda.l ≀ = (leβ€˜πΎ)
cdlemeda.j ∨ = (joinβ€˜πΎ)
cdlemeda.m ∧ = (meetβ€˜πΎ)
cdlemeda.a 𝐴 = (Atomsβ€˜πΎ)
cdlemeda.h 𝐻 = (LHypβ€˜πΎ)
cdlemeda.d 𝐷 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
cdlemedb.b 𝐡 = (Baseβ€˜πΎ)
Assertion
Ref Expression
cdlemedb (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝐷 ∈ 𝐡)

Proof of Theorem cdlemedb
StepHypRef Expression
1 cdlemeda.d . 2 𝐷 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
2 hllat 38875 . . . 4 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
32ad2antrr 724 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝐾 ∈ Lat)
4 simpll 765 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝐾 ∈ HL)
5 simprl 769 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝑅 ∈ 𝐴)
6 simprr 771 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝑆 ∈ 𝐴)
7 cdlemedb.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
8 cdlemeda.j . . . . 5 ∨ = (joinβ€˜πΎ)
9 cdlemeda.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
107, 8, 9hlatjcl 38879 . . . 4 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑅 ∨ 𝑆) ∈ 𝐡)
114, 5, 6, 10syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ (𝑅 ∨ 𝑆) ∈ 𝐡)
12 cdlemeda.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
137, 12lhpbase 39511 . . . 4 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ 𝐡)
1413ad2antlr 725 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ π‘Š ∈ 𝐡)
15 cdlemeda.m . . . 4 ∧ = (meetβ€˜πΎ)
167, 15latmcl 18441 . . 3 ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑆) ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ ((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ 𝐡)
173, 11, 14, 16syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ 𝐡)
181, 17eqeltrid 2833 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝐷 ∈ 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  β€˜cfv 6553  (class class class)co 7426  Basecbs 17189  lecple 17249  joincjn 18312  meetcmee 18313  Latclat 18432  Atomscatm 38775  HLchlt 38862  LHypclh 39497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-lub 18347  df-glb 18348  df-join 18349  df-meet 18350  df-lat 18433  df-ats 38779  df-atl 38810  df-cvlat 38834  df-hlat 38863  df-lhyp 39501
This theorem is referenced by:  cdleme20k  39832  cdleme20l2  39834  cdleme20l  39835  cdleme20m  39836
  Copyright terms: Public domain W3C validator