Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemeda Structured version   Visualization version   GIF version

Theorem cdlemeda 37867
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. 𝐷 represents s2. (Contributed by NM, 13-Nov-2012.)
Hypotheses
Ref Expression
cdlemeda.l = (le‘𝐾)
cdlemeda.j = (join‘𝐾)
cdlemeda.m = (meet‘𝐾)
cdlemeda.a 𝐴 = (Atoms‘𝐾)
cdlemeda.h 𝐻 = (LHyp‘𝐾)
cdlemeda.d 𝐷 = ((𝑅 𝑆) 𝑊)
Assertion
Ref Expression
cdlemeda (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐷𝐴)

Proof of Theorem cdlemeda
StepHypRef Expression
1 cdlemeda.d . 2 𝐷 = ((𝑅 𝑆) 𝑊)
2 simp1l 1195 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐾 ∈ HL)
3 simp31 1207 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅𝐴)
4 simp2l 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆𝐴)
5 cdlemeda.j . . . . . 6 = (join‘𝐾)
6 cdlemeda.a . . . . . 6 𝐴 = (Atoms‘𝐾)
75, 6hlatjcom 36937 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) = (𝑆 𝑅))
82, 3, 4, 7syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅 𝑆) = (𝑆 𝑅))
98oveq1d 7166 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑊) = ((𝑆 𝑅) 𝑊))
10 simp1r 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑊𝐻)
11 simp2r 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑆 𝑊)
12 simp32 1208 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
13 simp33 1209 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑆 (𝑃 𝑄))
14 cdlemeda.l . . . . . 6 = (le‘𝐾)
15 cdlemeda.h . . . . . 6 𝐻 = (LHyp‘𝐾)
1614, 5, 6, 15cdlemesner 37865 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆𝑅)
172, 3, 4, 12, 13, 16syl122anc 1377 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆𝑅)
18 cdlemeda.m . . . . 5 = (meet‘𝐾)
1914, 5, 18, 6, 15lhpat 37612 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑆𝑅)) → ((𝑆 𝑅) 𝑊) ∈ 𝐴)
202, 10, 4, 11, 3, 17, 19syl222anc 1384 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑆 𝑅) 𝑊) ∈ 𝐴)
219, 20eqeltrd 2853 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑊) ∈ 𝐴)
221, 21eqeltrid 2857 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐷𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2952   class class class wbr 5033  cfv 6336  (class class class)co 7151  lecple 16623  joincjn 17613  meetcmee 17614  Atomscatm 36832  HLchlt 36919  LHypclh 37553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-proset 17597  df-poset 17615  df-plt 17627  df-lub 17643  df-glb 17644  df-join 17645  df-meet 17646  df-p0 17708  df-p1 17709  df-lat 17715  df-clat 17777  df-oposet 36745  df-ol 36747  df-oml 36748  df-covers 36835  df-ats 36836  df-atl 36867  df-cvlat 36891  df-hlat 36920  df-lhyp 37557
This theorem is referenced by:  cdlemednpq  37868  cdleme19d  37875  cdleme20aN  37878  cdleme20c  37880  cdleme20f  37883  cdleme20g  37884  cdleme20j  37887  cdleme20l1  37889  cdleme20l2  37890
  Copyright terms: Public domain W3C validator