HomeHome Metamath Proof Explorer
Theorem List (p. 399 of 449)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28689)
  Hilbert Space Explorer  Hilbert Space Explorer
(28690-30212)
  Users' Mathboxes  Users' Mathboxes
(30213-44899)
 

Theorem List for Metamath Proof Explorer - 39801-39900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcytpfn 39801 Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015.)
CytP Fn ℕ
 
Theoremcytpval 39802* Substitutions for the Nth cyclotomic polynomial. (Contributed by Stefan O'Rear, 5-Sep-2015.)
𝑇 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))    &   𝑂 = (od‘𝑇)    &   𝑃 = (Poly1‘ℂfld)    &   𝑋 = (var1‘ℂfld)    &   𝑄 = (mulGrp‘𝑃)    &    = (-g𝑃)    &   𝐴 = (algSc‘𝑃)       (𝑁 ∈ ℕ → (CytP‘𝑁) = (𝑄 Σg (𝑟 ∈ (𝑂 “ {𝑁}) ↦ (𝑋 (𝐴𝑟)))))
 
20.29.49  Miscellaneous topology
 
Theoremfgraphopab 39803* Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.)
(𝐹:𝐴𝐵𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)})
 
Theoremfgraphxp 39804* Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.)
(𝐹:𝐴𝐵𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)})
 
Theoremhausgraph 39805 The graph of a continuous function into a Hausdorff space is closed. (Contributed by Stefan O'Rear, 25-Jan-2015.)
((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (Clsd‘(𝐽 ×t 𝐾)))
 
Syntaxctopsep 39806 The class of separable toplogies.
class TopSep
 
Syntaxctoplnd 39807 The class of Lindelöf toplogies.
class TopLnd
 
Definitiondf-topsep 39808* A topology is separable iff it has a countable dense subset. (Contributed by Stefan O'Rear, 8-Jan-2015.)
TopSep = {𝑗 ∈ Top ∣ ∃𝑥 ∈ 𝒫 𝑗(𝑥 ≼ ω ∧ ((cls‘𝑗)‘𝑥) = 𝑗)}
 
Definitiondf-toplnd 39809* A topology is Lindelöf iff every open cover has a countable subcover. (Contributed by Stefan O'Rear, 8-Jan-2015.)
TopLnd = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥( 𝑥 = 𝑦 → ∃𝑧 ∈ 𝒫 𝑥(𝑧 ≼ ω ∧ 𝑥 = 𝑧))}
 
20.30  Mathbox for Jon Pennant
 
Theoremiocunico 39810 Split an open interval into two pieces at point B, Co-author TA. (Contributed by Jon Pennant, 8-Jun-2019.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶))
 
Theoremiocinico 39811 The intersection of two sets that meet at a point is that point. (Contributed by Jon Pennant, 12-Jun-2019.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝐵})
 
Theoremiocmbl 39812 An open-below, closed-above real interval is measurable. (Contributed by Jon Pennant, 12-Jun-2019.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ∈ dom vol)
 
Theoremcnioobibld 39813* A bounded, continuous function on an open bounded interval is integrable. The function must be bounded. For a counterexample, consider 𝐹 = (𝑥 ∈ (0(,)1) ↦ (1 / 𝑥)). See cniccibl 24435 for closed bounded intervals. (Contributed by Jon Pennant, 31-May-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)       (𝜑𝐹 ∈ 𝐿1)
 
Theoremitgpowd 39814* The integral of a monomial on a closed bounded interval of the real line. Co-authors TA and MC. (Contributed by Jon Pennant, 31-May-2019.) (Revised by Thierry Arnoux, 14-Jun-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥 = (((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))) / (𝑁 + 1)))
 
Theoremarearect 39815 The area of a rectangle whose sides are parallel to the coordinate axes in (ℝ × ℝ) is its width multiplied by its height. (Contributed by Jon Pennant, 19-Mar-2019.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ    &   𝐷 ∈ ℝ    &   𝐴𝐵    &   𝐶𝐷    &   𝑆 = ((𝐴[,]𝐵) × (𝐶[,]𝐷))       (area‘𝑆) = ((𝐵𝐴) · (𝐷𝐶))
 
Theoremareaquad 39816* The area of a quadrilateral with two sides which are parallel to the y-axis in (ℝ × ℝ) is its width multiplied by the average height of its higher edge minus the average height of its lower edge. Co-author TA. (Contributed by Jon Pennant, 31-May-2019.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ    &   𝐷 ∈ ℝ    &   𝐸 ∈ ℝ    &   𝐹 ∈ ℝ    &   𝐴 < 𝐵    &   𝐶𝐸    &   𝐷𝐹    &   𝑈 = (𝐶 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶)))    &   𝑉 = (𝐸 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸)))    &   𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝑈[,]𝑉))}       (area‘𝑆) = ((((𝐹 + 𝐸) / 2) − ((𝐷 + 𝐶) / 2)) · (𝐵𝐴))
 
20.31  Mathbox for Richard Penner
 
20.31.1  Short Studies
 
20.31.1.1  Additional work on conditional logical operator
 
Theoremifpan123g 39817 Conjunction of conditional logical operators. (Contributed by RP, 18-Apr-2020.)
((if-(𝜑, 𝜒, 𝜏) ∧ if-(𝜓, 𝜃, 𝜂)) ↔ (((¬ 𝜑𝜒) ∧ (𝜑𝜏)) ∧ ((¬ 𝜓𝜃) ∧ (𝜓𝜂))))
 
Theoremifpan23 39818 Conjunction of conditional logical operators. (Contributed by RP, 20-Apr-2020.)
((if-(𝜑, 𝜓, 𝜒) ∧ if-(𝜑, 𝜃, 𝜏)) ↔ if-(𝜑, (𝜓𝜃), (𝜒𝜏)))
 
Theoremifpdfor2 39819 Define or in terms of conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜑, 𝜑, 𝜓))
 
Theoremifporcor 39820 Corollary of commutation of or. (Contributed by RP, 20-Apr-2020.)
(if-(𝜑, 𝜑, 𝜓) ↔ if-(𝜓, 𝜓, 𝜑))
 
Theoremifpdfan2 39821 Define and with conditional logic operator. (Contributed by RP, 25-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜑, 𝜓, 𝜑))
 
Theoremifpancor 39822 Corollary of commutation of and. (Contributed by RP, 25-Apr-2020.)
(if-(𝜑, 𝜓, 𝜑) ↔ if-(𝜓, 𝜑, 𝜓))
 
Theoremifpdfor 39823 Define or in terms of conditional logic operator and true. (Contributed by RP, 20-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜑, ⊤, 𝜓))
 
Theoremifpdfan 39824 Define and with conditional logic operator and false. (Contributed by RP, 20-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜑, 𝜓, ⊥))
 
Theoremifpbi2 39825 Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020.)
((𝜑𝜓) → (if-(𝜒, 𝜑, 𝜃) ↔ if-(𝜒, 𝜓, 𝜃)))
 
Theoremifpbi3 39826 Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020.)
((𝜑𝜓) → (if-(𝜒, 𝜃, 𝜑) ↔ if-(𝜒, 𝜃, 𝜓)))
 
Theoremifpim1 39827 Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜑𝜓) ↔ if-(¬ 𝜑, ⊤, 𝜓))
 
Theoremifpnot 39828 Restate negated wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
𝜑 ↔ if-(𝜑, ⊥, ⊤))
 
Theoremifpid2 39829 Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
(𝜑 ↔ if-(𝜑, ⊤, ⊥))
 
Theoremifpim2 39830 Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜓, ⊤, ¬ 𝜑))
 
Theoremifpbi23 39831 Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.)
(((𝜑𝜓) ∧ (𝜒𝜃)) → (if-(𝜏, 𝜑, 𝜒) ↔ if-(𝜏, 𝜓, 𝜃)))
 
Theoremifpdfbi 39832 Define biimplication as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜓))
 
Theoremifpbiidcor 39833 Restatement of biid 263. (Contributed by RP, 25-Apr-2020.)
if-(𝜑, 𝜑, ¬ 𝜑)
 
Theoremifpbicor 39834 Corollary of commutation of biimplication. (Contributed by RP, 25-Apr-2020.)
(if-(𝜑, 𝜓, ¬ 𝜓) ↔ if-(𝜓, 𝜑, ¬ 𝜑))
 
Theoremifpxorcor 39835 Corollary of commutation of biimplication. (Contributed by RP, 25-Apr-2020.)
(if-(𝜑, ¬ 𝜓, 𝜓) ↔ if-(𝜓, ¬ 𝜑, 𝜑))
 
Theoremifpbi1 39836 Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020.)
((𝜑𝜓) → (if-(𝜑, 𝜒, 𝜃) ↔ if-(𝜓, 𝜒, 𝜃)))
 
Theoremifpnot23 39837 Negation of conditional logical operator. (Contributed by RP, 18-Apr-2020.)
(¬ if-(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, ¬ 𝜓, ¬ 𝜒))
 
Theoremifpnotnotb 39838 Factor conditional logic operator over negation in terms 2 and 3. (Contributed by RP, 21-Apr-2020.)
(if-(𝜑, ¬ 𝜓, ¬ 𝜒) ↔ ¬ if-(𝜑, 𝜓, 𝜒))
 
Theoremifpnorcor 39839 Corollary of commutation of nor. (Contributed by RP, 25-Apr-2020.)
(if-(𝜑, ¬ 𝜑, ¬ 𝜓) ↔ if-(𝜓, ¬ 𝜓, ¬ 𝜑))
 
Theoremifpnancor 39840 Corollary of commutation of and. (Contributed by RP, 25-Apr-2020.)
(if-(𝜑, ¬ 𝜓, ¬ 𝜑) ↔ if-(𝜓, ¬ 𝜑, ¬ 𝜓))
 
Theoremifpnot23b 39841 Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020.)
(¬ if-(𝜑, ¬ 𝜓, 𝜒) ↔ if-(𝜑, 𝜓, ¬ 𝜒))
 
Theoremifpbiidcor2 39842 Restatement of biid 263. (Contributed by RP, 25-Apr-2020.)
¬ if-(𝜑, ¬ 𝜑, 𝜑)
 
Theoremifpnot23c 39843 Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020.)
(¬ if-(𝜑, 𝜓, ¬ 𝜒) ↔ if-(𝜑, ¬ 𝜓, 𝜒))
 
Theoremifpnot23d 39844 Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020.)
(¬ if-(𝜑, ¬ 𝜓, ¬ 𝜒) ↔ if-(𝜑, 𝜓, 𝜒))
 
Theoremifpdfnan 39845 Define nand as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜑, ¬ 𝜓, ⊤))
 
Theoremifpdfxor 39846 Define xor as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜑, ¬ 𝜓, 𝜓))
 
Theoremifpbi12 39847 Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.)
(((𝜑𝜓) ∧ (𝜒𝜃)) → (if-(𝜑, 𝜒, 𝜏) ↔ if-(𝜓, 𝜃, 𝜏)))
 
Theoremifpbi13 39848 Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.)
(((𝜑𝜓) ∧ (𝜒𝜃)) → (if-(𝜑, 𝜏, 𝜒) ↔ if-(𝜓, 𝜏, 𝜃)))
 
Theoremifpbi123 39849 Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.)
(((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → (if-(𝜑, 𝜒, 𝜏) ↔ if-(𝜓, 𝜃, 𝜂)))
 
Theoremifpidg 39850 Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜃 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ ((((𝜑𝜓) → 𝜃) ∧ ((𝜑𝜃) → 𝜓)) ∧ ((𝜒 → (𝜑𝜃)) ∧ (𝜃 → (𝜑𝜒)))))
 
Theoremifpid3g 39851 Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜒 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ (((𝜑𝜓) → 𝜒) ∧ ((𝜑𝜒) → 𝜓)))
 
Theoremifpid2g 39852 Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜓 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ ((𝜓 → (𝜑𝜒)) ∧ (𝜒 → (𝜑𝜓))))
 
Theoremifpid1g 39853 Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜑 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ ((𝜒𝜑) ∧ (𝜑𝜓)))
 
Theoremifpim23g 39854 Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.)
(((𝜑𝜓) ↔ if-(𝜒, 𝜓, ¬ 𝜑)) ↔ (((𝜑𝜓) → 𝜒) ∧ (𝜒 → (𝜑𝜓))))
 
Theoremifpim3 39855 Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜑))
 
Theoremifpnim1 39856 Restate negated implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.)
(¬ (𝜑𝜓) ↔ if-(𝜑, ¬ 𝜓, 𝜑))
 
Theoremifpim4 39857 Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜓, 𝜓, ¬ 𝜑))
 
Theoremifpnim2 39858 Restate negated implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.)
(¬ (𝜑𝜓) ↔ if-(𝜓, ¬ 𝜓, 𝜑))
 
Theoremifpim123g 39859 Implication of conditional logical operators. The right hand side is basically conjunctive normal form which is useful in proofs. (Contributed by RP, 16-Apr-2020.)
((if-(𝜑, 𝜒, 𝜏) → if-(𝜓, 𝜃, 𝜂)) ↔ ((((𝜑 → ¬ 𝜓) ∨ (𝜒𝜃)) ∧ ((𝜓𝜑) ∨ (𝜏𝜃))) ∧ (((𝜑𝜓) ∨ (𝜒𝜂)) ∧ ((¬ 𝜓𝜑) ∨ (𝜏𝜂)))))
 
Theoremifpim1g 39860 Implication of conditional logical operators. (Contributed by RP, 18-Apr-2020.)
((if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃)) ↔ (((𝜓𝜑) ∨ (𝜃𝜒)) ∧ ((𝜑𝜓) ∨ (𝜒𝜃))))
 
Theoremifp1bi 39861 Substitute the first element of conditional logical operator. (Contributed by RP, 20-Apr-2020.)
((if-(𝜑, 𝜒, 𝜃) ↔ if-(𝜓, 𝜒, 𝜃)) ↔ ((((𝜑𝜓) ∨ (𝜒𝜃)) ∧ ((𝜑𝜓) ∨ (𝜃𝜒))) ∧ (((𝜓𝜑) ∨ (𝜒𝜃)) ∧ ((𝜓𝜑) ∨ (𝜃𝜒)))))
 
Theoremifpbi1b 39862 When the first variable is irrelevant, it can be replaced. (Contributed by RP, 25-Apr-2020.)
(if-(𝜑, 𝜒, 𝜒) ↔ if-(𝜓, 𝜒, 𝜒))
 
Theoremifpimimb 39863 Factor conditional logic operator over implication in terms 2 and 3. (Contributed by RP, 21-Apr-2020.)
(if-(𝜑, (𝜓𝜒), (𝜃𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏)))
 
Theoremifpororb 39864 Factor conditional logic operator over disjunction in terms 2 and 3. (Contributed by RP, 21-Apr-2020.)
(if-(𝜑, (𝜓𝜒), (𝜃𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ∨ if-(𝜑, 𝜒, 𝜏)))
 
Theoremifpananb 39865 Factor conditional logic operator over conjunction in terms 2 and 3. (Contributed by RP, 21-Apr-2020.)
(if-(𝜑, (𝜓𝜒), (𝜃𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ∧ if-(𝜑, 𝜒, 𝜏)))
 
Theoremifpnannanb 39866 Factor conditional logic operator over nand in terms 2 and 3. (Contributed by RP, 21-Apr-2020.)
(if-(𝜑, (𝜓𝜒), (𝜃𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ⊼ if-(𝜑, 𝜒, 𝜏)))
 
Theoremifpor123g 39867 Disjunction of conditional logical operators. (Contributed by RP, 18-Apr-2020.)
((if-(𝜑, 𝜒, 𝜏) ∨ if-(𝜓, 𝜃, 𝜂)) ↔ ((((𝜑 → ¬ 𝜓) ∨ (𝜒𝜃)) ∧ ((𝜓𝜑) ∨ (𝜏𝜃))) ∧ (((𝜑𝜓) ∨ (𝜒𝜂)) ∧ ((¬ 𝜓𝜑) ∨ (𝜏𝜂)))))
 
Theoremifpimim 39868 Consequnce of implication. (Contributed by RP, 17-Apr-2020.)
(if-(𝜑, (𝜓𝜒), (𝜃𝜏)) → (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏)))
 
Theoremifpbibib 39869 Factor conditional logic operator over biimplication in terms 2 and 3. (Contributed by RP, 21-Apr-2020.)
(if-(𝜑, (𝜓𝜒), (𝜃𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ↔ if-(𝜑, 𝜒, 𝜏)))
 
Theoremifpxorxorb 39870 Factor conditional logic operator over xor in terms 2 and 3. (Contributed by RP, 21-Apr-2020.)
(if-(𝜑, (𝜓𝜒), (𝜃𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ⊻ if-(𝜑, 𝜒, 𝜏)))
 
20.31.1.2  Sophisms
 
Theoremrp-fakeimass 39871 A special case where implication appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020.)
((𝜑𝜒) ↔ (((𝜑𝜓) → 𝜒) ↔ (𝜑 → (𝜓𝜒))))
 
Theoremrp-fakeanorass 39872 A special case where a mixture of and and or appears to conform to a mixed associative law. (Contributed by RP, 26-Feb-2020.)
((𝜒𝜑) ↔ (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∧ (𝜓𝜒))))
 
Theoremrp-fakeoranass 39873 A special case where a mixture of or and and appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020.)
((𝜑𝜒) ↔ (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒))))
 
Theoremrp-fakeinunass 39874 A special case where a mixture of intersection and union appears to conform to a mixed associative law. (Contributed by RP, 26-Feb-2020.)
(𝐶𝐴 ↔ ((𝐴𝐵) ∪ 𝐶) = (𝐴 ∩ (𝐵𝐶)))
 
Theoremrp-fakeuninass 39875 A special case where a mixture of union and intersection appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020.)
(𝐴𝐶 ↔ ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵𝐶)))
 
20.31.1.3  Finite Sets

Membership in the class of finite sets can be expressed in many ways.

 
Theoremrp-isfinite5 39876* A set is said to be finite if it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ0. (Contributed by RP, 3-Mar-2020.)
(𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴)
 
Theoremrp-isfinite6 39877* A set is said to be finite if it is either empty or it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ. (Contributed by RP, 10-Mar-2020.)
(𝐴 ∈ Fin ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴))
 
20.31.1.4  General Observations
 
Theoremintabssd 39878* When for each element 𝑦 there is a subset 𝐴 which may substituted for 𝑥 such that 𝑦 satisfying 𝜒 implies 𝑥 satisfies 𝜓 then the intersection of all 𝑥 that satisfy 𝜓 is a subclass the intersection of all 𝑦 that satisfy 𝜒. (Contributed by RP, 17-Oct-2020.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → (𝜒𝜓))    &   (𝜑𝐴𝑦)       (𝜑 {𝑥𝜓} ⊆ {𝑦𝜒})
 
Theoremeu0 39879* There is only one empty set. (Contributed by RP, 1-Oct-2023.)
(∀𝑥 ¬ 𝑥 ∈ ∅ ∧ ∃!𝑥𝑦 ¬ 𝑦𝑥)
 
Theoremepelon2 39880 Over the ordinal numbers, one may define the relation 𝐴 E 𝐵 iff 𝐴𝐵 and one finds that, under this ordering, On is a well-ordered class, see epweon 7491. This is a weak form of epelg 5461 which only requires that we know 𝐵 to be a set. (Contributed by RP, 27-Sep-2023.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵𝐴𝐵))
 
Theoremontric3g 39881* For all 𝑥, 𝑦 ∈ On, one and only one of the following hold: 𝑥𝑦, 𝑦 = 𝑥, or 𝑦𝑥. This is a transparent strict trichotomy. (Contributed by RP, 27-Sep-2023.)
𝑥 ∈ On ∀𝑦 ∈ On ((𝑥𝑦 ↔ ¬ (𝑦 = 𝑥𝑦𝑥)) ∧ (𝑦 = 𝑥 ↔ ¬ (𝑥𝑦𝑦𝑥)) ∧ (𝑦𝑥 ↔ ¬ (𝑥𝑦𝑦 = 𝑥)))
 
Theoremdfsucon 39882* 𝐴 is called a successor ordinal if it is not a limit ordinal and not the empty set. (Contributed by RP, 11-Nov-2023.)
((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) ↔ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
 
Theoremsnen1g 39883 A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023.)
({𝐴} ≈ 1o𝐴 ∈ V)
 
Theoremsnen1el 39884 A singleton is equinumerous to ordinal one if its content is an element of it. (Contributed by RP, 8-Oct-2023.)
({𝐴} ≈ 1o𝐴 ∈ {𝐴})
 
Theoremsn1dom 39885 A singleton is dominated by ordinal one. (Contributed by RP, 29-Oct-2023.)
{𝐴} ≼ 1o
 
Theorempr2dom 39886 An unordered pair is dominated by ordinal two. (Contributed by RP, 29-Oct-2023.)
{𝐴, 𝐵} ≼ 2o
 
Theoremtr3dom 39887 An unordered triple is dominated by ordinal three. (Contributed by RP, 29-Oct-2023.)
{𝐴, 𝐵, 𝐶} ≼ 3o
 
Theoremensucne0 39888 A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof shortened by SN, 16-Nov-2023.)
(𝐴 ≈ suc 𝐵𝐴 ≠ ∅)
 
Theoremensucne0OLD 39889 A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ≈ suc 𝐵𝐴 ≠ ∅)
 
Theoremnndomog 39890 Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo 8706 when both are natural numbers. (Originally by NM, 17-Jun-1998.) (Contributed by RP, 5-Nov-2023.)
((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
 
Theoremdfom6 39891 Let ω be defined to be the union of the set of all finite ordinals. (Contributed by RP, 27-Sep-2023.)
ω = (On ∩ Fin)
 
Theoreminfordmin 39892 ω is the smallest infinite ordinal. (Contributed by RP, 27-Sep-2023.)
𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥
 
Theoremiscard4 39893 Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.)
((card‘𝐴) = 𝐴𝐴 ∈ ran card)
 
Theoremiscard5 39894* Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.)
((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
 
Theoremelrncard 39895* Let us define a cardinal number to be an element 𝐴 ∈ On such that 𝐴 is not equipotent with any 𝑥𝐴. (Contributed by RP, 1-Oct-2023.)
(𝐴 ∈ ran card ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
 
Theoremharsucnn 39896 The next cardinal after a finite ordinal is the successor ordinal. (Contributed by RP, 5-Nov-2023.)
(𝐴 ∈ ω → (har‘𝐴) = suc 𝐴)
 
Theoremharval3 39897* (har‘𝐴) is the least cardinal that is greater than 𝐴. (Contributed by RP, 4-Nov-2023.)
(𝐴 ∈ dom card → (har‘𝐴) = {𝑥 ∈ ran card ∣ 𝐴𝑥})
 
Theoremharval3on 39898* For any ordinal number 𝐴 let (har‘𝐴) denote the least cardinal that is greater than 𝐴; (Contributed by RP, 4-Nov-2023.)
(𝐴 ∈ On → (har‘𝐴) = {𝑥 ∈ ran card ∣ 𝐴𝑥})
 
Theoremen2pr 39899* A class is equinumerous to ordinal two iff it is a pair of distinct sets. (Contributed by RP, 11-Oct-2023.)
(𝐴 ≈ 2o ↔ ∃𝑥𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥𝑦))
 
Theorempr2cv 39900 If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.)
({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44899
  Copyright terms: Public domain < Previous  Next >