| Metamath
Proof Explorer Theorem List (p. 399 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lncmp 39801 | If two lines are comparable, they are equal. (Contributed by NM, 30-Apr-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ (𝑀‘𝑌) ∈ 𝑁)) → (𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌)) | ||
| Theorem | 2lnat 39802 | Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐹‘𝑋) ∈ 𝑁 ∧ (𝐹‘𝑌) ∈ 𝑁) ∧ (𝑋 ≠ 𝑌 ∧ (𝑋 ∧ 𝑌) ≠ 0 )) → (𝑋 ∧ 𝑌) ∈ 𝐴) | ||
| Theorem | 2atm2atN 39803 | Two joins with a common atom have a nonzero meet. (Contributed by NM, 4-Jul-2012.) (New usage is discouraged.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) ≠ 0 ) | ||
| Theorem | 2llnma1b 39804 | Generalization of 2llnma1 39805. (Contributed by NM, 26-Apr-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)) = 𝑃) | ||
| Theorem | 2llnma1 39805 | Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 11-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((𝑄 ∨ 𝑃) ∧ (𝑄 ∨ 𝑅)) = 𝑄) | ||
| Theorem | 2llnma3r 39806 | Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 30-Apr-2013.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → ((𝑃 ∨ 𝑅) ∧ (𝑄 ∨ 𝑅)) = 𝑅) | ||
| Theorem | 2llnma2 39807 | Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 28-May-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) = 𝑅) | ||
| Theorem | 2llnma2rN 39808 | Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 2-May-2013.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑅) ∧ (𝑄 ∨ 𝑅)) = 𝑅) | ||
| Theorem | cdlema1N 39809 | A condition for required for proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 29-Apr-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑋 ∨ 𝑅) = (𝑋 ∨ 𝑌)) | ||
| Theorem | cdlema2N 39810 | A condition for required for proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 9-May-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑅 ∧ 𝑋) = 0 ) | ||
| Theorem | cdlemblem 39811 | Lemma for cdlemb 39812. (Contributed by NM, 8-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑋) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) | ||
| Theorem | cdlemb 39812* | Given two atoms not less than or equal to an element covered by 1, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 8-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) | ||
| Syntax | cpadd 39813 | Extend class notation with projective subspace sum. |
| class +𝑃 | ||
| Definition | df-padd 39814* | Define projective sum of two subspaces (or more generally two sets of atoms), which is the union of all lines generated by pairs of atoms from each subspace. Lemma 16.2 of [MaedaMaeda] p. 68. For convenience, our definition is generalized to apply to empty sets. (Contributed by NM, 29-Dec-2011.) |
| ⊢ +𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚 ∪ 𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞 ∈ 𝑚 ∃𝑟 ∈ 𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)}))) | ||
| Theorem | paddfval 39815* | Projective subspace sum operation. (Contributed by NM, 29-Dec-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → + = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚 ∪ 𝑛) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑚 ∃𝑟 ∈ 𝑛 𝑝 ≤ (𝑞 ∨ 𝑟)}))) | ||
| Theorem | paddval 39816* | Projective subspace sum operation value. (Contributed by NM, 29-Dec-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) = ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝 ≤ (𝑞 ∨ 𝑟)})) | ||
| Theorem | elpadd 39817* | Member of a projective subspace sum. (Contributed by NM, 29-Dec-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌) ∨ (𝑆 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟))))) | ||
| Theorem | elpaddn0 39818* | Member of projective subspace sum of nonempty sets. (Contributed by NM, 3-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟)))) | ||
| Theorem | paddvaln0N 39819* | Projective subspace sum operation value for nonempty sets. (Contributed by NM, 27-Jan-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑋 + 𝑌) = {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝 ≤ (𝑞 ∨ 𝑟)}) | ||
| Theorem | elpaddri 39820 | Condition implying membership in a projective subspace sum. (Contributed by NM, 8-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑆 ∈ (𝑋 + 𝑌)) | ||
| Theorem | elpaddatriN 39821 | Condition implying membership in a projective subspace sum with a point. (Contributed by NM, 1-Feb-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑅 ∨ 𝑄))) → 𝑆 ∈ (𝑋 + {𝑄})) | ||
| Theorem | elpaddat 39822* | Membership in a projective subspace sum with a point. (Contributed by NM, 29-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 𝑆 ≤ (𝑝 ∨ 𝑄)))) | ||
| Theorem | elpaddatiN 39823* | Consequence of membership in a projective subspace sum with a point. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑅 ∈ (𝑋 + {𝑄}))) → ∃𝑝 ∈ 𝑋 𝑅 ≤ (𝑝 ∨ 𝑄)) | ||
| Theorem | elpadd2at 39824 | Membership in a projective subspace sum of two points. (Contributed by NM, 29-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)))) | ||
| Theorem | elpadd2at2 39825 | Membership in a projective subspace sum of two points. (Contributed by NM, 8-Mar-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) | ||
| Theorem | paddunssN 39826 | Projective subspace sum includes the set union of its arguments. (Contributed by NM, 12-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 ∪ 𝑌) ⊆ (𝑋 + 𝑌)) | ||
| Theorem | elpadd0 39827 | Member of projective subspace sum with at least one empty set. (Contributed by NM, 29-Dec-2011.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌))) | ||
| Theorem | paddval0 39828 | Projective subspace sum with at least one empty set. (Contributed by NM, 11-Jan-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑋 + 𝑌) = (𝑋 ∪ 𝑌)) | ||
| Theorem | padd01 39829 | Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑋 + ∅) = 𝑋) | ||
| Theorem | padd02 39830 | Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (∅ + 𝑋) = 𝑋) | ||
| Theorem | paddcom 39831 | Projective subspace sum commutes. (Contributed by NM, 3-Jan-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
| Theorem | paddssat 39832 | A projective subspace sum is a set of atoms. (Contributed by NM, 3-Jan-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ 𝐴) | ||
| Theorem | sspadd1 39833 | A projective subspace sum is a superset of its first summand. (ssun1 4126 analog.) (Contributed by NM, 3-Jan-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + 𝑌)) | ||
| Theorem | sspadd2 39834 | A projective subspace sum is a superset of its second summand. (ssun2 4127 analog.) (Contributed by NM, 3-Jan-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑌 + 𝑋)) | ||
| Theorem | paddss1 39835 | Subset law for projective subspace sum. (unss1 4133 analog.) (Contributed by NM, 7-Mar-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → (𝑋 ⊆ 𝑌 → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍))) | ||
| Theorem | paddss2 39836 | Subset law for projective subspace sum. (unss2 4135 analog.) (Contributed by NM, 7-Mar-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → (𝑋 ⊆ 𝑌 → (𝑍 + 𝑋) ⊆ (𝑍 + 𝑌))) | ||
| Theorem | paddss12 39837 | Subset law for projective subspace sum. (unss12 4136 analog.) (Contributed by NM, 7-Mar-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊))) | ||
| Theorem | paddasslem1 39838 | Lemma for paddass 39856. (Contributed by NM, 8-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑥 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦)) → ¬ 𝑥 ≤ (𝑟 ∨ 𝑦)) | ||
| Theorem | paddasslem2 39839 | Lemma for paddass 39856. (Contributed by NM, 8-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑧 ≤ (𝑟 ∨ 𝑦)) | ||
| Theorem | paddasslem3 39840* | Lemma for paddass 39856. Restate projective space axiom ps-2 39496. (Contributed by NM, 8-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑥 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((¬ 𝑥 ≤ (𝑟 ∨ 𝑦) ∧ 𝑝 ≠ 𝑧) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑧 ≤ (𝑟 ∨ 𝑦))) → ∃𝑠 ∈ 𝐴 (𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) | ||
| Theorem | paddasslem4 39841* | Lemma for paddass 39856. Combine paddasslem1 39838, paddasslem2 39839, and paddasslem3 39840. (Contributed by NM, 8-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → ∃𝑠 ∈ 𝐴 (𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) | ||
| Theorem | paddasslem5 39842 | Lemma for paddass 39856. Show 𝑠 ≠ 𝑧 by contradiction. (Contributed by NM, 8-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧) ∧ 𝑠 ≤ (𝑥 ∨ 𝑦))) → 𝑠 ≠ 𝑧) | ||
| Theorem | paddasslem6 39843 | Lemma for paddass 39856. (Contributed by NM, 8-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑝 ≤ (𝑠 ∨ 𝑧)) | ||
| Theorem | paddasslem7 39844 | Lemma for paddass 39856. Combine paddasslem5 39842 and paddasslem6 39843. (Contributed by NM, 9-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧) ∧ 𝑠 ≤ (𝑥 ∨ 𝑦)) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑝 ≤ (𝑠 ∨ 𝑧)) | ||
| Theorem | paddasslem8 39845 | Lemma for paddass 39856. (Contributed by NM, 8-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑝 ≤ (𝑠 ∨ 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) | ||
| Theorem | paddasslem9 39846 | Lemma for paddass 39856. Combine paddasslem7 39844 and paddasslem8 39845. (Contributed by NM, 9-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) | ||
| Theorem | paddasslem10 39847 | Lemma for paddass 39856. Use paddasslem4 39841 to eliminate 𝑠 from paddasslem9 39846. (Contributed by NM, 9-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) | ||
| Theorem | paddasslem11 39848 | Lemma for paddass 39856. The case when 𝑝 = 𝑧. (Contributed by NM, 11-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ 𝑧 ∈ 𝑍) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) | ||
| Theorem | paddasslem12 39849 | Lemma for paddass 39856. The case when 𝑥 = 𝑦. (Contributed by NM, 11-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) | ||
| Theorem | paddasslem13 39850 | Lemma for paddass 39856. The case when 𝑟 ≤ (𝑥 ∨ 𝑦). (Unlike the proof in Maeda and Maeda, we don't need 𝑥 ≠ 𝑦.) (Contributed by NM, 11-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ (𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑝 ≤ (𝑥 ∨ 𝑟)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) | ||
| Theorem | paddasslem14 39851 | Lemma for paddass 39856. Remove 𝑝 ≠ 𝑧, 𝑥 ≠ 𝑦, and ¬ 𝑟 ≤ (𝑥 ∨ 𝑦) from antecedent of paddasslem10 39847, using paddasslem11 39848, paddasslem12 39849, and paddasslem13 39850. (Contributed by NM, 11-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) | ||
| Theorem | paddasslem15 39852 | Lemma for paddass 39856. Use elpaddn0 39818 to eliminate 𝑦 and 𝑧 from paddasslem14 39851. (Contributed by NM, 11-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 ≤ (𝑥 ∨ 𝑟))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) | ||
| Theorem | paddasslem16 39853 | Lemma for paddass 39856. Use elpaddn0 39818 to eliminate 𝑥 and 𝑟 from paddasslem15 39852. (Contributed by NM, 11-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)) | ||
| Theorem | paddasslem17 39854 | Lemma for paddass 39856. The case when at least one sum argument is empty. (Contributed by NM, 12-Jan-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ ¬ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)) | ||
| Theorem | paddasslem18 39855 | Lemma for paddass 39856. Combine paddasslem16 39853 and paddasslem17 39854. (Contributed by NM, 12-Jan-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)) | ||
| Theorem | paddass 39856 | Projective subspace sum is associative. Equation 16.2.1 of [MaedaMaeda] p. 68. In our version, the subspaces do not have to be nonempty. (Contributed by NM, 29-Dec-2011.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
| Theorem | padd12N 39857 | Commutative/associative law for projective subspace sum. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) | ||
| Theorem | padd4N 39858 | Rearrangement of 4 terms in a projective subspace sum. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) | ||
| Theorem | paddidm 39859 | Projective subspace sum is idempotent. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 13-Jan-2012.) |
| ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑋 + 𝑋) = 𝑋) | ||
| Theorem | paddclN 39860 | The projective sum of two subspaces is a subspace. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | ||
| Theorem | paddssw1 39861 | Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) → (𝑋 + 𝑌) ⊆ (𝑍 + 𝑍))) | ||
| Theorem | paddssw2 39862 | Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍))) | ||
| Theorem | paddss 39863 | Subset law for projective subspace sum. (unss 4138 analog.) (Contributed by NM, 7-Mar-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) ↔ (𝑋 + 𝑌) ⊆ 𝑍)) | ||
| Theorem | pmodlem1 39864* | Lemma for pmod1i 39866. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌 ∩ 𝑍))) | ||
| Theorem | pmodlem2 39865 | Lemma for pmod1i 39866. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ⊆ 𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌 ∩ 𝑍))) | ||
| Theorem | pmod1i 39866 | The modular law holds in a projective subspace. (Contributed by NM, 10-Mar-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → (𝑋 ⊆ 𝑍 → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌 ∩ 𝑍)))) | ||
| Theorem | pmod2iN 39867 | Dual of the modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑍 ⊆ 𝑋 → ((𝑋 ∩ 𝑌) + 𝑍) = (𝑋 ∩ (𝑌 + 𝑍)))) | ||
| Theorem | pmodN 39868 | The modular law for projective subspaces. (Contributed by NM, 26-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 ∩ (𝑌 + (𝑋 ∩ 𝑍))) = ((𝑋 ∩ 𝑌) + (𝑋 ∩ 𝑍))) | ||
| Theorem | pmodl42N 39869 | Lemma derived from modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
| ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) | ||
| Theorem | pmapjoin 39870 | The projective map of the join of two lattice elements. Part of Equation 15.5.3 of [MaedaMaeda] p. 63. (Contributed by NM, 27-Jan-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑀‘𝑋) + (𝑀‘𝑌)) ⊆ (𝑀‘(𝑋 ∨ 𝑌))) | ||
| Theorem | pmapjat1 39871 | The projective map of the join of a lattice element and an atom. (Contributed by NM, 28-Jan-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑋 ∨ 𝑄)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) | ||
| Theorem | pmapjat2 39872 | The projective map of the join of an atom with a lattice element. (Contributed by NM, 12-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑄 ∨ 𝑋)) = ((𝑀‘𝑄) + (𝑀‘𝑋))) | ||
| Theorem | pmapjlln1 39873 | The projective map of the join of a lattice element and a lattice line (expressed as the join 𝑄 ∨ 𝑅 of two atoms). (Contributed by NM, 16-Sep-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘(𝑋 ∨ (𝑄 ∨ 𝑅))) = ((𝑀‘𝑋) + (𝑀‘(𝑄 ∨ 𝑅)))) | ||
| Theorem | hlmod1i 39874 | A version of the modular law pmod1i 39866 that holds in a Hilbert lattice. (Contributed by NM, 13-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌))) → ((𝑋 ∨ 𝑌) ∧ 𝑍) = (𝑋 ∨ (𝑌 ∧ 𝑍)))) | ||
| Theorem | atmod1i1 39875 | Version of modular law pmod1i 39866 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 11-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = ((𝑃 ∨ 𝑋) ∧ 𝑌)) | ||
| Theorem | atmod1i1m 39876 | Version of modular law pmod1i 39866 that holds in a Hilbert lattice, when an element meets an atom. (Contributed by NM, 2-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ∧ 𝑃) ≤ 𝑍) → ((𝑋 ∧ 𝑃) ∨ (𝑌 ∧ 𝑍)) = (((𝑋 ∧ 𝑃) ∨ 𝑌) ∧ 𝑍)) | ||
| Theorem | atmod1i2 39877 | Version of modular law pmod1i 39866 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (𝑃 ∧ 𝑌)) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) | ||
| Theorem | llnmod1i2 39878 | Version of modular law pmod1i 39866 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 ∨ 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)) = ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌)) | ||
| Theorem | atmod2i1 39879 | Version of modular law pmod2iN 39867 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → ((𝑋 ∧ 𝑌) ∨ 𝑃) = (𝑋 ∧ (𝑌 ∨ 𝑃))) | ||
| Theorem | atmod2i2 39880 | Version of modular law pmod2iN 39867 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → ((𝑋 ∧ 𝑃) ∨ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑌))) | ||
| Theorem | llnmod2i2 39881 | Version of modular law pmod1i 39866 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 ∨ 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → ((𝑋 ∧ (𝑃 ∨ 𝑄)) ∨ 𝑌) = (𝑋 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑌))) | ||
| Theorem | atmod3i1 39882 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ (𝑃 ∨ 𝑌))) | ||
| Theorem | atmod3i2 39883 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (𝑌 ∧ 𝑃)) = (𝑌 ∧ (𝑋 ∨ 𝑃))) | ||
| Theorem | atmod4i1 39884 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → ((𝑋 ∧ 𝑌) ∨ 𝑃) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) | ||
| Theorem | atmod4i2 39885 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-Mar-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ((𝑃 ∧ 𝑌) ∨ 𝑋) = ((𝑃 ∨ 𝑋) ∧ 𝑌)) | ||
| Theorem | llnexchb2lem 39886 | Lemma for llnexchb2 39887. (Contributed by NM, 17-Nov-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) ↔ (𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄)))) | ||
| Theorem | llnexchb2 39887 | Line exchange property (compare cvlatexchb2 39353 for atoms). (Contributed by NM, 17-Nov-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → ((𝑋 ∧ 𝑌) ≤ 𝑍 ↔ (𝑋 ∧ 𝑌) = (𝑋 ∧ 𝑍))) | ||
| Theorem | llnexch2N 39888 | Line exchange property (compare cvlatexch2 39355 for atoms). (Contributed by NM, 18-Nov-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → ((𝑋 ∧ 𝑌) ≤ 𝑍 → (𝑋 ∧ 𝑍) ≤ 𝑌)) | ||
| Theorem | dalawlem1 39889 | Lemma for dalaw 39904. Special case of dath2 39755, where 𝐶 is replaced by ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)). The remaining lemmas will eliminate the conditions on the atoms imposed by dath2 39755. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃)) ∧ (¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑆 ∨ 𝑇) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑇 ∨ 𝑈) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑈 ∨ 𝑆)) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈))) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem2 39890 | Lemma for dalaw 39904. Utility lemma that breaks ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) into a join of two pieces. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇))) | ||
| Theorem | dalawlem3 39891 | Lemma for dalaw 39904. First piece of dalawlem5 39893. (Contributed by NM, 4-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem4 39892 | Lemma for dalaw 39904. Second piece of dalawlem5 39893. (Contributed by NM, 4-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ 𝑇) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem5 39893 | Lemma for dalaw 39904. Special case to eliminate the requirement ¬ (𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) in dalawlem1 39889. (Contributed by NM, 4-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem6 39894 | Lemma for dalaw 39904. First piece of dalawlem8 39896. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem7 39895 | Lemma for dalaw 39904. Second piece of dalawlem8 39896. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem8 39896 | Lemma for dalaw 39904. Special case to eliminate the requirement ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) in dalawlem1 39889. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem9 39897 | Lemma for dalaw 39904. Special case to eliminate the requirement ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃) in dalawlem1 39889. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem10 39898 | Lemma for dalaw 39904. Combine dalawlem5 39893, dalawlem8 39896, and dalawlem9 . (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ¬ (¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃)) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem11 39899 | Lemma for dalaw 39904. First part of dalawlem13 39901. (Contributed by NM, 17-Sep-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem12 39900 | Lemma for dalaw 39904. Second part of dalawlem13 39901. (Contributed by NM, 17-Sep-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |