| Metamath
Proof Explorer Theorem List (p. 399 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30865) |
(30866-32388) |
(32389-49332) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | padd4N 39801 | Rearrangement of 4 terms in a projective subspace sum. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) | ||
| Theorem | paddidm 39802 | Projective subspace sum is idempotent. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 13-Jan-2012.) |
| ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑋 + 𝑋) = 𝑋) | ||
| Theorem | paddclN 39803 | The projective sum of two subspaces is a subspace. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | ||
| Theorem | paddssw1 39804 | Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) → (𝑋 + 𝑌) ⊆ (𝑍 + 𝑍))) | ||
| Theorem | paddssw2 39805 | Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍))) | ||
| Theorem | paddss 39806 | Subset law for projective subspace sum. (unss 4170 analog.) (Contributed by NM, 7-Mar-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) ↔ (𝑋 + 𝑌) ⊆ 𝑍)) | ||
| Theorem | pmodlem1 39807* | Lemma for pmod1i 39809. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌 ∩ 𝑍))) | ||
| Theorem | pmodlem2 39808 | Lemma for pmod1i 39809. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ⊆ 𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌 ∩ 𝑍))) | ||
| Theorem | pmod1i 39809 | The modular law holds in a projective subspace. (Contributed by NM, 10-Mar-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → (𝑋 ⊆ 𝑍 → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌 ∩ 𝑍)))) | ||
| Theorem | pmod2iN 39810 | Dual of the modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑍 ⊆ 𝑋 → ((𝑋 ∩ 𝑌) + 𝑍) = (𝑋 ∩ (𝑌 + 𝑍)))) | ||
| Theorem | pmodN 39811 | The modular law for projective subspaces. (Contributed by NM, 26-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 ∩ (𝑌 + (𝑋 ∩ 𝑍))) = ((𝑋 ∩ 𝑌) + (𝑋 ∩ 𝑍))) | ||
| Theorem | pmodl42N 39812 | Lemma derived from modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
| ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) | ||
| Theorem | pmapjoin 39813 | The projective map of the join of two lattice elements. Part of Equation 15.5.3 of [MaedaMaeda] p. 63. (Contributed by NM, 27-Jan-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑀‘𝑋) + (𝑀‘𝑌)) ⊆ (𝑀‘(𝑋 ∨ 𝑌))) | ||
| Theorem | pmapjat1 39814 | The projective map of the join of a lattice element and an atom. (Contributed by NM, 28-Jan-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑋 ∨ 𝑄)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) | ||
| Theorem | pmapjat2 39815 | The projective map of the join of an atom with a lattice element. (Contributed by NM, 12-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑄 ∨ 𝑋)) = ((𝑀‘𝑄) + (𝑀‘𝑋))) | ||
| Theorem | pmapjlln1 39816 | The projective map of the join of a lattice element and a lattice line (expressed as the join 𝑄 ∨ 𝑅 of two atoms). (Contributed by NM, 16-Sep-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘(𝑋 ∨ (𝑄 ∨ 𝑅))) = ((𝑀‘𝑋) + (𝑀‘(𝑄 ∨ 𝑅)))) | ||
| Theorem | hlmod1i 39817 | A version of the modular law pmod1i 39809 that holds in a Hilbert lattice. (Contributed by NM, 13-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌))) → ((𝑋 ∨ 𝑌) ∧ 𝑍) = (𝑋 ∨ (𝑌 ∧ 𝑍)))) | ||
| Theorem | atmod1i1 39818 | Version of modular law pmod1i 39809 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 11-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = ((𝑃 ∨ 𝑋) ∧ 𝑌)) | ||
| Theorem | atmod1i1m 39819 | Version of modular law pmod1i 39809 that holds in a Hilbert lattice, when an element meets an atom. (Contributed by NM, 2-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ∧ 𝑃) ≤ 𝑍) → ((𝑋 ∧ 𝑃) ∨ (𝑌 ∧ 𝑍)) = (((𝑋 ∧ 𝑃) ∨ 𝑌) ∧ 𝑍)) | ||
| Theorem | atmod1i2 39820 | Version of modular law pmod1i 39809 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (𝑃 ∧ 𝑌)) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) | ||
| Theorem | llnmod1i2 39821 | Version of modular law pmod1i 39809 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 ∨ 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)) = ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌)) | ||
| Theorem | atmod2i1 39822 | Version of modular law pmod2iN 39810 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → ((𝑋 ∧ 𝑌) ∨ 𝑃) = (𝑋 ∧ (𝑌 ∨ 𝑃))) | ||
| Theorem | atmod2i2 39823 | Version of modular law pmod2iN 39810 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → ((𝑋 ∧ 𝑃) ∨ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑌))) | ||
| Theorem | llnmod2i2 39824 | Version of modular law pmod1i 39809 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 ∨ 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → ((𝑋 ∧ (𝑃 ∨ 𝑄)) ∨ 𝑌) = (𝑋 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑌))) | ||
| Theorem | atmod3i1 39825 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ (𝑃 ∨ 𝑌))) | ||
| Theorem | atmod3i2 39826 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (𝑌 ∧ 𝑃)) = (𝑌 ∧ (𝑋 ∨ 𝑃))) | ||
| Theorem | atmod4i1 39827 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → ((𝑋 ∧ 𝑌) ∨ 𝑃) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) | ||
| Theorem | atmod4i2 39828 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-Mar-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ((𝑃 ∧ 𝑌) ∨ 𝑋) = ((𝑃 ∨ 𝑋) ∧ 𝑌)) | ||
| Theorem | llnexchb2lem 39829 | Lemma for llnexchb2 39830. (Contributed by NM, 17-Nov-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) ↔ (𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄)))) | ||
| Theorem | llnexchb2 39830 | Line exchange property (compare cvlatexchb2 39295 for atoms). (Contributed by NM, 17-Nov-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → ((𝑋 ∧ 𝑌) ≤ 𝑍 ↔ (𝑋 ∧ 𝑌) = (𝑋 ∧ 𝑍))) | ||
| Theorem | llnexch2N 39831 | Line exchange property (compare cvlatexch2 39297 for atoms). (Contributed by NM, 18-Nov-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → ((𝑋 ∧ 𝑌) ≤ 𝑍 → (𝑋 ∧ 𝑍) ≤ 𝑌)) | ||
| Theorem | dalawlem1 39832 | Lemma for dalaw 39847. Special case of dath2 39698, where 𝐶 is replaced by ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)). The remaining lemmas will eliminate the conditions on the atoms imposed by dath2 39698. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃)) ∧ (¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑆 ∨ 𝑇) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑇 ∨ 𝑈) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑈 ∨ 𝑆)) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈))) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem2 39833 | Lemma for dalaw 39847. Utility lemma that breaks ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) into a join of two pieces. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇))) | ||
| Theorem | dalawlem3 39834 | Lemma for dalaw 39847. First piece of dalawlem5 39836. (Contributed by NM, 4-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem4 39835 | Lemma for dalaw 39847. Second piece of dalawlem5 39836. (Contributed by NM, 4-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ 𝑇) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem5 39836 | Lemma for dalaw 39847. Special case to eliminate the requirement ¬ (𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) in dalawlem1 39832. (Contributed by NM, 4-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem6 39837 | Lemma for dalaw 39847. First piece of dalawlem8 39839. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem7 39838 | Lemma for dalaw 39847. Second piece of dalawlem8 39839. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem8 39839 | Lemma for dalaw 39847. Special case to eliminate the requirement ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) in dalawlem1 39832. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem9 39840 | Lemma for dalaw 39847. Special case to eliminate the requirement ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃) in dalawlem1 39832. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem10 39841 | Lemma for dalaw 39847. Combine dalawlem5 39836, dalawlem8 39839, and dalawlem9 . (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ¬ (¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃)) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem11 39842 | Lemma for dalaw 39847. First part of dalawlem13 39844. (Contributed by NM, 17-Sep-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem12 39843 | Lemma for dalaw 39847. Second part of dalawlem13 39844. (Contributed by NM, 17-Sep-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem13 39844 | Lemma for dalaw 39847. Special case to eliminate the requirement ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 in dalawlem1 39832. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem14 39845 | Lemma for dalaw 39847. Combine dalawlem10 39841 and dalawlem13 39844. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ¬ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ (¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃))) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem15 39846 | Lemma for dalaw 39847. Swap variable triples 𝑃𝑄𝑅 and 𝑆𝑇𝑈 in dalawlem14 39845, to obtain the elimination of the remaining conditions in dalawlem1 39832. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ¬ (((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑆 ∨ 𝑇) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑇 ∨ 𝑈) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑈 ∨ 𝑆))) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalaw 39847 | Desargues's law, derived from Desargues's theorem dath 39697 and with no conditions on the atoms. If triples 〈𝑃, 𝑄, 𝑅〉 and 〈𝑆, 𝑇, 𝑈〉 are centrally perspective, i.e., ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈), then they are axially perspective. Theorem 13.3 of [Crawley] p. 110. (Contributed by NM, 7-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))))) | ||
| Syntax | cpclN 39848 | Extend class notation with projective subspace closure. |
| class PCl | ||
| Definition | df-pclN 39849* | Projective subspace closure, which is the smallest projective subspace containing an arbitrary set of atoms. The subspace closure of the union of a set of projective subspaces is their supremum in PSubSp. Related to an analogous definition of closure used in Lemma 3.1.4 of [PtakPulmannova] p. 68. (Note that this closure is not necessarily one of the closed projective subspaces PSubCl of df-psubclN 39896.) (Contributed by NM, 7-Sep-2013.) |
| ⊢ PCl = (𝑘 ∈ V ↦ (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ ∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦})) | ||
| Theorem | pclfvalN 39850* | The projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) | ||
| Theorem | pclvalN 39851* | Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) | ||
| Theorem | pclclN 39852 | Closure of the projective subspace closure function. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ∈ 𝑆) | ||
| Theorem | elpclN 39853* | Membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) & ⊢ 𝑄 ∈ V ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑄 ∈ (𝑈‘𝑋) ↔ ∀𝑦 ∈ 𝑆 (𝑋 ⊆ 𝑦 → 𝑄 ∈ 𝑦))) | ||
| Theorem | elpcliN 39854 | Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) ∧ 𝑄 ∈ (𝑈‘𝑋)) → 𝑄 ∈ 𝑌) | ||
| Theorem | pclssN 39855 | Ordering is preserved by subspace closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘𝑌)) | ||
| Theorem | pclssidN 39856 | A set of atoms is included in its projective subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ (𝑈‘𝑋)) | ||
| Theorem | pclidN 39857 | The projective subspace closure of a projective subspace is itself. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) → (𝑈‘𝑋) = 𝑋) | ||
| Theorem | pclbtwnN 39858 | A projective subspace sandwiched between a set of atoms and the set's projective subspace closure equals the closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑋 = (𝑈‘𝑌)) | ||
| Theorem | pclunN 39859 | The projective subspace closure of the union of two sets of atoms equals the closure of their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑈‘(𝑋 + 𝑌))) | ||
| Theorem | pclun2N 39860 | The projective subspace closure of the union of two subspaces equals their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑋 + 𝑌)) | ||
| Theorem | pclfinN 39861* | The projective subspace closure of a set equals the union of the closures of its finite subsets. Analogous to Lemma 3.3.6 of [PtakPulmannova] p. 72. Compare the closed subspace version pclfinclN 39911. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦)) | ||
| Theorem | pclcmpatN 39862* | The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑃 ∈ (𝑈‘𝑋)) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) | ||
| Syntax | cpolN 39863 | Extend class notation with polarity of projective subspace $m$. |
| class ⊥𝑃 | ||
| Definition | df-polarityN 39864* | Define polarity of projective subspace, which is a kind of complement of the subspace. Item 2 in [Holland95] p. 222 bottom. For more generality, we define it for all subsets of atoms, not just projective subspaces. The intersection with Atoms‘𝑙 ensures it is defined when 𝑚 = ∅. (Contributed by NM, 23-Oct-2011.) |
| ⊢ ⊥𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙) ↦ ((Atoms‘𝑙) ∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘𝑙)‘((oc‘𝑙)‘𝑝))))) | ||
| Theorem | polfvalN 39865* | The projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.) |
| ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) | ||
| Theorem | polvalN 39866* | Value of the projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.) |
| ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑃‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝)))) | ||
| Theorem | polval2N 39867 | Alternate expression for value of the projective subspace polarity function. Equation for polarity in [Holland95] p. 223. (Contributed by NM, 22-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝑈 = (lub‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑃‘𝑋) = (𝑀‘( ⊥ ‘(𝑈‘𝑋)))) | ||
| Theorem | polsubN 39868 | The polarity of a set of atoms is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝑆) | ||
| Theorem | polssatN 39869 | The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) | ||
| Theorem | pol0N 39870 | The polarity of the empty projective subspace is the whole space. (Contributed by NM, 29-Oct-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = 𝐴) | ||
| Theorem | pol1N 39871 | The polarity of the whole projective subspace is the empty space. Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ( ⊥ ‘𝐴) = ∅) | ||
| Theorem | 2pol0N 39872 | The closed subspace closure of the empty set. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ( ⊥ ‘( ⊥ ‘∅)) = ∅) | ||
| Theorem | polpmapN 39873 | The polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘𝑋))) | ||
| Theorem | 2polpmapN 39874 | Double polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(𝑀‘𝑋))) = (𝑀‘𝑋)) | ||
| Theorem | 2polvalN 39875 | Value of double polarity. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = (𝑀‘(𝑈‘𝑋))) | ||
| Theorem | 2polssN 39876 | A set of atoms is a subset of its double polarity. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) | ||
| Theorem | 3polN 39877 | Triple polarity cancels to a single polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) = ( ⊥ ‘𝑆)) | ||
| Theorem | polcon3N 39878 | Contraposition law for polarity. Remark in [Holland95] p. 223. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) | ||
| Theorem | 2polcon4bN 39879 | Contraposition law for polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (( ⊥ ‘( ⊥ ‘𝑋)) ⊆ ( ⊥ ‘( ⊥ ‘𝑌)) ↔ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) | ||
| Theorem | polcon2N 39880 | Contraposition law for polarity. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ ( ⊥ ‘𝑋)) | ||
| Theorem | polcon2bN 39881 | Contraposition law for polarity. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 ⊆ ( ⊥ ‘𝑌) ↔ 𝑌 ⊆ ( ⊥ ‘𝑋))) | ||
| Theorem | pclss2polN 39882 | The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) | ||
| Theorem | pcl0N 39883 | The projective subspace closure of the empty subspace. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → (𝑈‘∅) = ∅) | ||
| Theorem | pcl0bN 39884 | The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → ((𝑈‘𝑃) = ∅ ↔ 𝑃 = ∅)) | ||
| Theorem | pmaplubN 39885 | The LUB of a projective map is the projective map's argument. (Contributed by NM, 13-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘(𝑀‘𝑋)) = 𝑋) | ||
| Theorem | sspmaplubN 39886 | A set of atoms is a subset of the projective map of its LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → 𝑆 ⊆ (𝑀‘(𝑈‘𝑆))) | ||
| Theorem | 2pmaplubN 39887 | Double projective map of an LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆)))) = (𝑀‘(𝑈‘𝑆))) | ||
| Theorem | paddunN 39888 | The closure of the projective sum of two sets of atoms is the same as the closure of their union. (Closure is actually double polarity, which can be trivially inferred from this theorem using fveq2d 6890.) (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘(𝑆 + 𝑇)) = ( ⊥ ‘(𝑆 ∪ 𝑇))) | ||
| Theorem | poldmj1N 39889 | De Morgan's law for polarity of projective sum. (oldmj1 39181 analog.) (Contributed by NM, 7-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘(𝑆 + 𝑇)) = (( ⊥ ‘𝑆) ∩ ( ⊥ ‘𝑇))) | ||
| Theorem | pmapj2N 39890 | The projective map of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑀‘(𝑋 ∨ 𝑌)) = ( ⊥ ‘( ⊥ ‘((𝑀‘𝑋) + (𝑀‘𝑌))))) | ||
| Theorem | pmapocjN 39891 | The projective map of the orthocomplement of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ 𝑁 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘( ⊥ ‘(𝑋 ∨ 𝑌))) = (𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌)))) | ||
| Theorem | polatN 39892 | The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
| ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝑀‘( ⊥ ‘𝑄))) | ||
| Theorem | 2polatN 39893 | Double polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘(𝑃‘{𝑄})) = {𝑄}) | ||
| Theorem | pnonsingN 39894 | The intersection of a set of atoms and its polarity is empty. Definition of nonsingular in [Holland95] p. 214. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∩ (𝑃‘𝑋)) = ∅) | ||
| Syntax | cpscN 39895 | Extend class notation with set of all closed projective subspaces for a Hilbert lattice. |
| class PSubCl | ||
| Definition | df-psubclN 39896* | Define set of all closed projective subspaces, which are those sets of atoms that equal their double polarity. Based on definition in [Holland95] p. 223. (Contributed by NM, 23-Jan-2012.) |
| ⊢ PSubCl = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠)}) | ||
| Theorem | psubclsetN 39897* | The set of closed projective subspaces in a Hilbert lattice. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → 𝐶 = {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑠)) = 𝑠)}) | ||
| Theorem | ispsubclN 39898 | The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) | ||
| Theorem | psubcliN 39899 | Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) | ||
| Theorem | psubcli2N 39900 | Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |