Step | Hyp | Ref
| Expression |
1 | | cleq1lem 14693 |
. . . . . . 7
⊢ (𝑥 = ∅ → ((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ↔
(∅ ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))) |
2 | | difeq1 4050 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (𝑥 ∖ {𝑚}) = (∅ ∖ {𝑚})) |
3 | 2 | raleqdv 3348 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
4 | 3 | raleqbi1dv 3340 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
5 | | raleq 3342 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (∀𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾 ↔ ∀𝑚 ∈ ∅ (𝐹‘𝑚) ∥ 𝐾)) |
6 | 4, 5 | anbi12d 631 |
. . . . . . 7
⊢ (𝑥 = ∅ →
((∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾) ↔ (∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ ∅ (𝐹‘𝑚) ∥ 𝐾))) |
7 | 1, 6 | anbi12d 631 |
. . . . . 6
⊢ (𝑥 = ∅ → (((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾)) ↔ ((∅ ⊆ ℕ ∧
(𝐾 ∈ ℕ ∧
𝐹:ℕ⟶ℕ))
∧ (∀𝑚 ∈
∅ ∀𝑛 ∈
(∅ ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ ∅ (𝐹‘𝑚) ∥ 𝐾)))) |
8 | | prodeq1 15619 |
. . . . . . 7
⊢ (𝑥 = ∅ → ∏𝑚 ∈ 𝑥 (𝐹‘𝑚) = ∏𝑚 ∈ ∅ (𝐹‘𝑚)) |
9 | 8 | breq1d 5084 |
. . . . . 6
⊢ (𝑥 = ∅ → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾 ↔ ∏𝑚 ∈ ∅ (𝐹‘𝑚) ∥ 𝐾)) |
10 | 7, 9 | imbi12d 345 |
. . . . 5
⊢ (𝑥 = ∅ → ((((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾) ↔ (((∅ ⊆ ℕ ∧
(𝐾 ∈ ℕ ∧
𝐹:ℕ⟶ℕ))
∧ (∀𝑚 ∈
∅ ∀𝑛 ∈
(∅ ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ ∅ (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ ∅ (𝐹‘𝑚) ∥ 𝐾))) |
11 | | cleq1lem 14693 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ↔ (𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))) |
12 | | difeq1 4050 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ∖ {𝑚}) = (𝑦 ∖ {𝑚})) |
13 | 12 | raleqdv 3348 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
14 | 13 | raleqbi1dv 3340 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
15 | | raleq 3342 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (∀𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾 ↔ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) |
16 | 14, 15 | anbi12d 631 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾) ↔ (∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾))) |
17 | 11, 16 | anbi12d 631 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾)) ↔ ((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)))) |
18 | | prodeq1 15619 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ∏𝑚 ∈ 𝑥 (𝐹‘𝑚) = ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) |
19 | 18 | breq1d 5084 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾 ↔ ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) |
20 | 17, 19 | imbi12d 345 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾) ↔ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾))) |
21 | | cleq1lem 14693 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ↔ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))) |
22 | | difeq1 4050 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ∖ {𝑚}) = ((𝑦 ∪ {𝑧}) ∖ {𝑚})) |
23 | 22 | raleqdv 3348 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
24 | 23 | raleqbi1dv 3340 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
25 | | raleq 3342 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾)) |
26 | 24, 25 | anbi12d 631 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾) ↔ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾))) |
27 | 21, 26 | anbi12d 631 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾)) ↔ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾)))) |
28 | | prodeq1 15619 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑚 ∈ 𝑥 (𝐹‘𝑚) = ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚)) |
29 | 28 | breq1d 5084 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾 ↔ ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾)) |
30 | 27, 29 | imbi12d 345 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾) ↔ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾))) |
31 | | cleq1lem 14693 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → ((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ↔ (𝑀 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))) |
32 | | difeq1 4050 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (𝑥 ∖ {𝑚}) = (𝑀 ∖ {𝑚})) |
33 | 32 | raleqdv 3348 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
34 | 33 | raleqbi1dv 3340 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
35 | | raleq 3342 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (∀𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾 ↔ ∀𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾)) |
36 | 34, 35 | anbi12d 631 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → ((∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾) ↔ (∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾))) |
37 | 31, 36 | anbi12d 631 |
. . . . . 6
⊢ (𝑥 = 𝑀 → (((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾)) ↔ ((𝑀 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾)))) |
38 | | prodeq1 15619 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → ∏𝑚 ∈ 𝑥 (𝐹‘𝑚) = ∏𝑚 ∈ 𝑀 (𝐹‘𝑚)) |
39 | 38 | breq1d 5084 |
. . . . . 6
⊢ (𝑥 = 𝑀 → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾 ↔ ∏𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾)) |
40 | 37, 39 | imbi12d 345 |
. . . . 5
⊢ (𝑥 = 𝑀 → ((((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑥 (𝐹‘𝑚) ∥ 𝐾) ↔ (((𝑀 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾))) |
41 | | prod0 15653 |
. . . . . . . 8
⊢
∏𝑚 ∈
∅ (𝐹‘𝑚) = 1 |
42 | | nnz 12342 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℤ) |
43 | | 1dvds 15980 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℤ → 1 ∥
𝐾) |
44 | 42, 43 | syl 17 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → 1 ∥
𝐾) |
45 | 41, 44 | eqbrtrid 5109 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ →
∏𝑚 ∈ ∅
(𝐹‘𝑚) ∥ 𝐾) |
46 | 45 | adantr 481 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) →
∏𝑚 ∈ ∅
(𝐹‘𝑚) ∥ 𝐾) |
47 | 46 | ad2antlr 724 |
. . . . 5
⊢
(((∅ ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ ∅
∀𝑛 ∈ (∅
∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ ∅ (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ ∅ (𝐹‘𝑚) ∥ 𝐾) |
48 | | coprmproddvdslem 16367 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾))) |
49 | 10, 20, 30, 40, 47, 48 | findcard2s 8948 |
. . . 4
⊢ (𝑀 ∈ Fin → (((𝑀 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾)) |
50 | 49 | exp4c 433 |
. . 3
⊢ (𝑀 ∈ Fin → (𝑀 ⊆ ℕ → ((𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) →
((∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾) → ∏𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾)))) |
51 | 50 | impcom 408 |
. 2
⊢ ((𝑀 ⊆ ℕ ∧ 𝑀 ∈ Fin) → ((𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) →
((∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾) → ∏𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾))) |
52 | 51 | 3imp 1110 |
1
⊢ (((𝑀 ⊆ ℕ ∧ 𝑀 ∈ Fin) ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
(∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾) |