MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprmproddvds Structured version   Visualization version   GIF version

Theorem coprmproddvds 16296
Description: If a positive integer is divisible by each element of a set of pairwise coprime positive integers, then it is divisible by their product. (Contributed by AV, 19-Aug-2020.)
Assertion
Ref Expression
coprmproddvds (((𝑀 ⊆ ℕ ∧ 𝑀 ∈ Fin) ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑀 (𝐹𝑚) ∥ 𝐾)
Distinct variable groups:   𝑚,𝐹,𝑛   𝑚,𝐾   𝑚,𝑀,𝑛
Allowed substitution hint:   𝐾(𝑛)

Proof of Theorem coprmproddvds
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cleq1lem 14621 . . . . . . 7 (𝑥 = ∅ → ((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ↔ (∅ ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))))
2 difeq1 4046 . . . . . . . . . 10 (𝑥 = ∅ → (𝑥 ∖ {𝑚}) = (∅ ∖ {𝑚}))
32raleqdv 3339 . . . . . . . . 9 (𝑥 = ∅ → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
43raleqbi1dv 3331 . . . . . . . 8 (𝑥 = ∅ → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
5 raleq 3333 . . . . . . . 8 (𝑥 = ∅ → (∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾 ↔ ∀𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾))
64, 5anbi12d 630 . . . . . . 7 (𝑥 = ∅ → ((∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾) ↔ (∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾)))
71, 6anbi12d 630 . . . . . 6 (𝑥 = ∅ → (((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾)) ↔ ((∅ ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾))))
8 prodeq1 15547 . . . . . . 7 (𝑥 = ∅ → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚 ∈ ∅ (𝐹𝑚))
98breq1d 5080 . . . . . 6 (𝑥 = ∅ → (∏𝑚𝑥 (𝐹𝑚) ∥ 𝐾 ↔ ∏𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾))
107, 9imbi12d 344 . . . . 5 (𝑥 = ∅ → ((((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑥 (𝐹𝑚) ∥ 𝐾) ↔ (((∅ ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾)) → ∏𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾)))
11 cleq1lem 14621 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ↔ (𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))))
12 difeq1 4046 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∖ {𝑚}) = (𝑦 ∖ {𝑚}))
1312raleqdv 3339 . . . . . . . . 9 (𝑥 = 𝑦 → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
1413raleqbi1dv 3331 . . . . . . . 8 (𝑥 = 𝑦 → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
15 raleq 3333 . . . . . . . 8 (𝑥 = 𝑦 → (∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾 ↔ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
1614, 15anbi12d 630 . . . . . . 7 (𝑥 = 𝑦 → ((∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾) ↔ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)))
1711, 16anbi12d 630 . . . . . 6 (𝑥 = 𝑦 → (((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾)) ↔ ((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾))))
18 prodeq1 15547 . . . . . . 7 (𝑥 = 𝑦 → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚𝑦 (𝐹𝑚))
1918breq1d 5080 . . . . . 6 (𝑥 = 𝑦 → (∏𝑚𝑥 (𝐹𝑚) ∥ 𝐾 ↔ ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
2017, 19imbi12d 344 . . . . 5 (𝑥 = 𝑦 → ((((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑥 (𝐹𝑚) ∥ 𝐾) ↔ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)))
21 cleq1lem 14621 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ↔ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))))
22 difeq1 4046 . . . . . . . . . 10 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ∖ {𝑚}) = ((𝑦 ∪ {𝑧}) ∖ {𝑚}))
2322raleqdv 3339 . . . . . . . . 9 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
2423raleqbi1dv 3331 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
25 raleq 3333 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))
2624, 25anbi12d 630 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾) ↔ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)))
2721, 26anbi12d 630 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾)) ↔ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))))
28 prodeq1 15547 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚))
2928breq1d 5080 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑚𝑥 (𝐹𝑚) ∥ 𝐾 ↔ ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))
3027, 29imbi12d 344 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑥 (𝐹𝑚) ∥ 𝐾) ↔ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)))
31 cleq1lem 14621 . . . . . . 7 (𝑥 = 𝑀 → ((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ↔ (𝑀 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))))
32 difeq1 4046 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝑥 ∖ {𝑚}) = (𝑀 ∖ {𝑚}))
3332raleqdv 3339 . . . . . . . . 9 (𝑥 = 𝑀 → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
3433raleqbi1dv 3331 . . . . . . . 8 (𝑥 = 𝑀 → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
35 raleq 3333 . . . . . . . 8 (𝑥 = 𝑀 → (∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾 ↔ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾))
3634, 35anbi12d 630 . . . . . . 7 (𝑥 = 𝑀 → ((∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾) ↔ (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾)))
3731, 36anbi12d 630 . . . . . 6 (𝑥 = 𝑀 → (((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾)) ↔ ((𝑀 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾))))
38 prodeq1 15547 . . . . . . 7 (𝑥 = 𝑀 → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚𝑀 (𝐹𝑚))
3938breq1d 5080 . . . . . 6 (𝑥 = 𝑀 → (∏𝑚𝑥 (𝐹𝑚) ∥ 𝐾 ↔ ∏𝑚𝑀 (𝐹𝑚) ∥ 𝐾))
4037, 39imbi12d 344 . . . . 5 (𝑥 = 𝑀 → ((((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑥 (𝐹𝑚) ∥ 𝐾) ↔ (((𝑀 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑀 (𝐹𝑚) ∥ 𝐾)))
41 prod0 15581 . . . . . . . 8 𝑚 ∈ ∅ (𝐹𝑚) = 1
42 nnz 12272 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
43 1dvds 15908 . . . . . . . . 9 (𝐾 ∈ ℤ → 1 ∥ 𝐾)
4442, 43syl 17 . . . . . . . 8 (𝐾 ∈ ℕ → 1 ∥ 𝐾)
4541, 44eqbrtrid 5105 . . . . . . 7 (𝐾 ∈ ℕ → ∏𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾)
4645adantr 480 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ∏𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾)
4746ad2antlr 723 . . . . 5 (((∅ ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾)) → ∏𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾)
48 coprmproddvdslem 16295 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)))
4910, 20, 30, 40, 47, 48findcard2s 8910 . . . 4 (𝑀 ∈ Fin → (((𝑀 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑀 (𝐹𝑚) ∥ 𝐾))
5049exp4c 432 . . 3 (𝑀 ∈ Fin → (𝑀 ⊆ ℕ → ((𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑀 (𝐹𝑚) ∥ 𝐾))))
5150impcom 407 . 2 ((𝑀 ⊆ ℕ ∧ 𝑀 ∈ Fin) → ((𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑀 (𝐹𝑚) ∥ 𝐾)))
52513imp 1109 1 (((𝑀 ⊆ ℕ ∧ 𝑀 ∈ Fin) ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑀 (𝐹𝑚) ∥ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cdif 3880  cun 3881  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  1c1 10803  cn 11903  cz 12249  cprod 15543  cdvds 15891   gcd cgcd 16129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-prod 15544  df-dvds 15892  df-gcd 16130
This theorem is referenced by:  prmodvdslcmf  16676
  Copyright terms: Public domain W3C validator