MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprmproddvds Structured version   Visualization version   GIF version

Theorem coprmproddvds 16640
Description: If a positive integer is divisible by each element of a set of pairwise coprime positive integers, then it is divisible by their product. (Contributed by AV, 19-Aug-2020.)
Assertion
Ref Expression
coprmproddvds (((𝑀 ⊆ ℕ ∧ 𝑀 ∈ Fin) ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑀 (𝐹𝑚) ∥ 𝐾)
Distinct variable groups:   𝑚,𝐹,𝑛   𝑚,𝐾   𝑚,𝑀,𝑛
Allowed substitution hint:   𝐾(𝑛)

Proof of Theorem coprmproddvds
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cleq1lem 14955 . . . . . . 7 (𝑥 = ∅ → ((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ↔ (∅ ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))))
2 difeq1 4085 . . . . . . . . . 10 (𝑥 = ∅ → (𝑥 ∖ {𝑚}) = (∅ ∖ {𝑚}))
32raleqdv 3301 . . . . . . . . 9 (𝑥 = ∅ → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
43raleqbi1dv 3313 . . . . . . . 8 (𝑥 = ∅ → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
5 raleq 3298 . . . . . . . 8 (𝑥 = ∅ → (∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾 ↔ ∀𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾))
64, 5anbi12d 632 . . . . . . 7 (𝑥 = ∅ → ((∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾) ↔ (∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾)))
71, 6anbi12d 632 . . . . . 6 (𝑥 = ∅ → (((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾)) ↔ ((∅ ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾))))
8 prodeq1 15880 . . . . . . 7 (𝑥 = ∅ → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚 ∈ ∅ (𝐹𝑚))
98breq1d 5120 . . . . . 6 (𝑥 = ∅ → (∏𝑚𝑥 (𝐹𝑚) ∥ 𝐾 ↔ ∏𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾))
107, 9imbi12d 344 . . . . 5 (𝑥 = ∅ → ((((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑥 (𝐹𝑚) ∥ 𝐾) ↔ (((∅ ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾)) → ∏𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾)))
11 cleq1lem 14955 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ↔ (𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))))
12 difeq1 4085 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∖ {𝑚}) = (𝑦 ∖ {𝑚}))
1312raleqdv 3301 . . . . . . . . 9 (𝑥 = 𝑦 → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
1413raleqbi1dv 3313 . . . . . . . 8 (𝑥 = 𝑦 → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
15 raleq 3298 . . . . . . . 8 (𝑥 = 𝑦 → (∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾 ↔ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
1614, 15anbi12d 632 . . . . . . 7 (𝑥 = 𝑦 → ((∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾) ↔ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)))
1711, 16anbi12d 632 . . . . . 6 (𝑥 = 𝑦 → (((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾)) ↔ ((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾))))
18 prodeq1 15880 . . . . . . 7 (𝑥 = 𝑦 → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚𝑦 (𝐹𝑚))
1918breq1d 5120 . . . . . 6 (𝑥 = 𝑦 → (∏𝑚𝑥 (𝐹𝑚) ∥ 𝐾 ↔ ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
2017, 19imbi12d 344 . . . . 5 (𝑥 = 𝑦 → ((((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑥 (𝐹𝑚) ∥ 𝐾) ↔ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)))
21 cleq1lem 14955 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ↔ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))))
22 difeq1 4085 . . . . . . . . . 10 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ∖ {𝑚}) = ((𝑦 ∪ {𝑧}) ∖ {𝑚}))
2322raleqdv 3301 . . . . . . . . 9 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
2423raleqbi1dv 3313 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
25 raleq 3298 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))
2624, 25anbi12d 632 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾) ↔ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)))
2721, 26anbi12d 632 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾)) ↔ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))))
28 prodeq1 15880 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚))
2928breq1d 5120 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑚𝑥 (𝐹𝑚) ∥ 𝐾 ↔ ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))
3027, 29imbi12d 344 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑥 (𝐹𝑚) ∥ 𝐾) ↔ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)))
31 cleq1lem 14955 . . . . . . 7 (𝑥 = 𝑀 → ((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ↔ (𝑀 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))))
32 difeq1 4085 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝑥 ∖ {𝑚}) = (𝑀 ∖ {𝑚}))
3332raleqdv 3301 . . . . . . . . 9 (𝑥 = 𝑀 → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
3433raleqbi1dv 3313 . . . . . . . 8 (𝑥 = 𝑀 → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
35 raleq 3298 . . . . . . . 8 (𝑥 = 𝑀 → (∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾 ↔ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾))
3634, 35anbi12d 632 . . . . . . 7 (𝑥 = 𝑀 → ((∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾) ↔ (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾)))
3731, 36anbi12d 632 . . . . . 6 (𝑥 = 𝑀 → (((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾)) ↔ ((𝑀 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾))))
38 prodeq1 15880 . . . . . . 7 (𝑥 = 𝑀 → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚𝑀 (𝐹𝑚))
3938breq1d 5120 . . . . . 6 (𝑥 = 𝑀 → (∏𝑚𝑥 (𝐹𝑚) ∥ 𝐾 ↔ ∏𝑚𝑀 (𝐹𝑚) ∥ 𝐾))
4037, 39imbi12d 344 . . . . 5 (𝑥 = 𝑀 → ((((𝑥 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑥 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑥 (𝐹𝑚) ∥ 𝐾) ↔ (((𝑀 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑀 (𝐹𝑚) ∥ 𝐾)))
41 prod0 15916 . . . . . . . 8 𝑚 ∈ ∅ (𝐹𝑚) = 1
42 nnz 12557 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
43 1dvds 16247 . . . . . . . . 9 (𝐾 ∈ ℤ → 1 ∥ 𝐾)
4442, 43syl 17 . . . . . . . 8 (𝐾 ∈ ℕ → 1 ∥ 𝐾)
4541, 44eqbrtrid 5145 . . . . . . 7 (𝐾 ∈ ℕ → ∏𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾)
4645adantr 480 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ∏𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾)
4746ad2antlr 727 . . . . 5 (((∅ ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾)) → ∏𝑚 ∈ ∅ (𝐹𝑚) ∥ 𝐾)
48 coprmproddvdslem 16639 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)))
4910, 20, 30, 40, 47, 48findcard2s 9135 . . . 4 (𝑀 ∈ Fin → (((𝑀 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑀 (𝐹𝑚) ∥ 𝐾))
5049exp4c 432 . . 3 (𝑀 ∈ Fin → (𝑀 ⊆ ℕ → ((𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑀 (𝐹𝑚) ∥ 𝐾))))
5150impcom 407 . 2 ((𝑀 ⊆ ℕ ∧ 𝑀 ∈ Fin) → ((𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑀 (𝐹𝑚) ∥ 𝐾)))
52513imp 1110 1 (((𝑀 ⊆ ℕ ∧ 𝑀 ∈ Fin) ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑀 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑀 (𝐹𝑚) ∥ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cdif 3914  cun 3915  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  1c1 11076  cn 12193  cz 12536  cprod 15876  cdvds 16229   gcd cgcd 16471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-prod 15877  df-dvds 16230  df-gcd 16472
This theorem is referenced by:  prmodvdslcmf  17025
  Copyright terms: Public domain W3C validator