MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfun Structured version   Visualization version   GIF version

Theorem lcmfun 16558
Description: The lcm function for a union of sets of integers. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
lcmfun (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍)))

Proof of Theorem lcmfun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cleq1lem 14891 . . . . . 6 (𝑥 = ∅ → ((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) ↔ (∅ ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))))
2 uneq2 4111 . . . . . . . . 9 (𝑥 = ∅ → (𝑌𝑥) = (𝑌 ∪ ∅))
3 un0 4343 . . . . . . . . 9 (𝑌 ∪ ∅) = 𝑌
42, 3eqtrdi 2784 . . . . . . . 8 (𝑥 = ∅ → (𝑌𝑥) = 𝑌)
54fveq2d 6832 . . . . . . 7 (𝑥 = ∅ → (lcm‘(𝑌𝑥)) = (lcm𝑌))
6 fveq2 6828 . . . . . . . . 9 (𝑥 = ∅ → (lcm𝑥) = (lcm‘∅))
7 lcmf0 16547 . . . . . . . . 9 (lcm‘∅) = 1
86, 7eqtrdi 2784 . . . . . . . 8 (𝑥 = ∅ → (lcm𝑥) = 1)
98oveq2d 7368 . . . . . . 7 (𝑥 = ∅ → ((lcm𝑌) lcm (lcm𝑥)) = ((lcm𝑌) lcm 1))
105, 9eqeq12d 2749 . . . . . 6 (𝑥 = ∅ → ((lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥)) ↔ (lcm𝑌) = ((lcm𝑌) lcm 1)))
111, 10imbi12d 344 . . . . 5 (𝑥 = ∅ → (((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥))) ↔ ((∅ ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm𝑌) = ((lcm𝑌) lcm 1))))
12 cleq1lem 14891 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) ↔ (𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))))
13 uneq2 4111 . . . . . . . 8 (𝑥 = 𝑦 → (𝑌𝑥) = (𝑌𝑦))
1413fveq2d 6832 . . . . . . 7 (𝑥 = 𝑦 → (lcm‘(𝑌𝑥)) = (lcm‘(𝑌𝑦)))
15 fveq2 6828 . . . . . . . 8 (𝑥 = 𝑦 → (lcm𝑥) = (lcm𝑦))
1615oveq2d 7368 . . . . . . 7 (𝑥 = 𝑦 → ((lcm𝑌) lcm (lcm𝑥)) = ((lcm𝑌) lcm (lcm𝑦)))
1714, 16eqeq12d 2749 . . . . . 6 (𝑥 = 𝑦 → ((lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥)) ↔ (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦))))
1812, 17imbi12d 344 . . . . 5 (𝑥 = 𝑦 → (((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥))) ↔ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))))
19 cleq1lem 14891 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) ↔ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))))
20 uneq2 4111 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑌𝑥) = (𝑌 ∪ (𝑦 ∪ {𝑧})))
2120fveq2d 6832 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (lcm‘(𝑌𝑥)) = (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))))
22 fveq2 6828 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (lcm𝑥) = (lcm‘(𝑦 ∪ {𝑧})))
2322oveq2d 7368 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm𝑌) lcm (lcm𝑥)) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))))
2421, 23eqeq12d 2749 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥)) ↔ (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧})))))
2519, 24imbi12d 344 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥))) ↔ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))))))
26 cleq1lem 14891 . . . . . 6 (𝑥 = 𝑍 → ((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) ↔ (𝑍 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))))
27 uneq2 4111 . . . . . . . 8 (𝑥 = 𝑍 → (𝑌𝑥) = (𝑌𝑍))
2827fveq2d 6832 . . . . . . 7 (𝑥 = 𝑍 → (lcm‘(𝑌𝑥)) = (lcm‘(𝑌𝑍)))
29 fveq2 6828 . . . . . . . 8 (𝑥 = 𝑍 → (lcm𝑥) = (lcm𝑍))
3029oveq2d 7368 . . . . . . 7 (𝑥 = 𝑍 → ((lcm𝑌) lcm (lcm𝑥)) = ((lcm𝑌) lcm (lcm𝑍)))
3128, 30eqeq12d 2749 . . . . . 6 (𝑥 = 𝑍 → ((lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥)) ↔ (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍))))
3226, 31imbi12d 344 . . . . 5 (𝑥 = 𝑍 → (((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥))) ↔ ((𝑍 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍)))))
33 lcmfcl 16541 . . . . . . . . . 10 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm𝑌) ∈ ℕ0)
3433nn0zd 12500 . . . . . . . . 9 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm𝑌) ∈ ℤ)
35 lcm1 16523 . . . . . . . . 9 ((lcm𝑌) ∈ ℤ → ((lcm𝑌) lcm 1) = (abs‘(lcm𝑌)))
3634, 35syl 17 . . . . . . . 8 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → ((lcm𝑌) lcm 1) = (abs‘(lcm𝑌)))
37 nn0re 12397 . . . . . . . . . . 11 ((lcm𝑌) ∈ ℕ0 → (lcm𝑌) ∈ ℝ)
38 nn0ge0 12413 . . . . . . . . . . 11 ((lcm𝑌) ∈ ℕ0 → 0 ≤ (lcm𝑌))
3937, 38jca 511 . . . . . . . . . 10 ((lcm𝑌) ∈ ℕ0 → ((lcm𝑌) ∈ ℝ ∧ 0 ≤ (lcm𝑌)))
4033, 39syl 17 . . . . . . . . 9 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → ((lcm𝑌) ∈ ℝ ∧ 0 ≤ (lcm𝑌)))
41 absid 15205 . . . . . . . . 9 (((lcm𝑌) ∈ ℝ ∧ 0 ≤ (lcm𝑌)) → (abs‘(lcm𝑌)) = (lcm𝑌))
4240, 41syl 17 . . . . . . . 8 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (abs‘(lcm𝑌)) = (lcm𝑌))
4336, 42eqtrd 2768 . . . . . . 7 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → ((lcm𝑌) lcm 1) = (lcm𝑌))
4443adantl 481 . . . . . 6 ((∅ ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → ((lcm𝑌) lcm 1) = (lcm𝑌))
4544eqcomd 2739 . . . . 5 ((∅ ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm𝑌) = ((lcm𝑌) lcm 1))
46 unass 4121 . . . . . . . . . . . . . 14 ((𝑌𝑦) ∪ {𝑧}) = (𝑌 ∪ (𝑦 ∪ {𝑧}))
4746eqcomi 2742 . . . . . . . . . . . . 13 (𝑌 ∪ (𝑦 ∪ {𝑧})) = ((𝑌𝑦) ∪ {𝑧})
4847a1i 11 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑌 ∪ (𝑦 ∪ {𝑧})) = ((𝑌𝑦) ∪ {𝑧}))
4948fveq2d 6832 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = (lcm‘((𝑌𝑦) ∪ {𝑧})))
50 simpl 482 . . . . . . . . . . . . . . 15 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → 𝑌 ⊆ ℤ)
5150adantl 481 . . . . . . . . . . . . . 14 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → 𝑌 ⊆ ℤ)
52 unss 4139 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℤ)
53 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → 𝑦 ⊆ ℤ)
5452, 53sylbir 235 . . . . . . . . . . . . . . 15 ((𝑦 ∪ {𝑧}) ⊆ ℤ → 𝑦 ⊆ ℤ)
5554adantr 480 . . . . . . . . . . . . . 14 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → 𝑦 ⊆ ℤ)
5651, 55unssd 4141 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (𝑌𝑦) ⊆ ℤ)
5756adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑌𝑦) ⊆ ℤ)
58 unfi 9087 . . . . . . . . . . . . . . . 16 ((𝑌 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑌𝑦) ∈ Fin)
5958ex 412 . . . . . . . . . . . . . . 15 (𝑌 ∈ Fin → (𝑦 ∈ Fin → (𝑌𝑦) ∈ Fin))
6059adantl 481 . . . . . . . . . . . . . 14 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (𝑦 ∈ Fin → (𝑌𝑦) ∈ Fin))
6160adantl 481 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (𝑦 ∈ Fin → (𝑌𝑦) ∈ Fin))
6261impcom 407 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑌𝑦) ∈ Fin)
63 vex 3441 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
6463snss 4736 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℤ ↔ {𝑧} ⊆ ℤ)
6564biimpri 228 . . . . . . . . . . . . . . . 16 ({𝑧} ⊆ ℤ → 𝑧 ∈ ℤ)
6665adantl 481 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → 𝑧 ∈ ℤ)
6752, 66sylbir 235 . . . . . . . . . . . . . 14 ((𝑦 ∪ {𝑧}) ⊆ ℤ → 𝑧 ∈ ℤ)
6867adantr 480 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → 𝑧 ∈ ℤ)
6968adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → 𝑧 ∈ ℤ)
70 lcmfunsn 16557 . . . . . . . . . . . 12 (((𝑌𝑦) ⊆ ℤ ∧ (𝑌𝑦) ∈ Fin ∧ 𝑧 ∈ ℤ) → (lcm‘((𝑌𝑦) ∪ {𝑧})) = ((lcm‘(𝑌𝑦)) lcm 𝑧))
7157, 62, 69, 70syl3anc 1373 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm‘((𝑌𝑦) ∪ {𝑧})) = ((lcm‘(𝑌𝑦)) lcm 𝑧))
7249, 71eqtrd 2768 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm‘(𝑌𝑦)) lcm 𝑧))
7372adantr 480 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm‘(𝑌𝑦)) lcm 𝑧))
7454anim1i 615 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)))
7574adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)))
76 id 22 . . . . . . . . . . . 12 (((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦))) → ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦))))
7775, 76mpan9 506 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))
7877oveq1d 7367 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → ((lcm‘(𝑌𝑦)) lcm 𝑧) = (((lcm𝑌) lcm (lcm𝑦)) lcm 𝑧))
7934adantl 481 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm𝑌) ∈ ℤ)
8079adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm𝑌) ∈ ℤ)
8155anim2i 617 . . . . . . . . . . . . . . 15 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ ℤ))
8281ancomd 461 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin))
83 lcmfcl 16541 . . . . . . . . . . . . . 14 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℕ0)
8482, 83syl 17 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm𝑦) ∈ ℕ0)
8584nn0zd 12500 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm𝑦) ∈ ℤ)
86 lcmass 16527 . . . . . . . . . . . 12 (((lcm𝑌) ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((lcm𝑌) lcm (lcm𝑦)) lcm 𝑧) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
8780, 85, 69, 86syl3anc 1373 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (((lcm𝑌) lcm (lcm𝑦)) lcm 𝑧) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
8887adantr 480 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → (((lcm𝑌) lcm (lcm𝑦)) lcm 𝑧) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
8978, 88eqtrd 2768 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → ((lcm‘(𝑌𝑦)) lcm 𝑧) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
9073, 89eqtrd 2768 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
9153adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ∧ 𝑦 ∈ Fin) → 𝑦 ⊆ ℤ)
92 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin)
9366adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ∧ 𝑦 ∈ Fin) → 𝑧 ∈ ℤ)
9491, 92, 933jca 1128 . . . . . . . . . . . . . . . 16 (((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ∧ 𝑦 ∈ Fin) → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ))
9594ex 412 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → (𝑦 ∈ Fin → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ)))
9652, 95sylbir 235 . . . . . . . . . . . . . 14 ((𝑦 ∪ {𝑧}) ⊆ ℤ → (𝑦 ∈ Fin → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ)))
9796adantr 480 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (𝑦 ∈ Fin → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ)))
9897impcom 407 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ))
99 lcmfunsn 16557 . . . . . . . . . . . 12 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧))
10098, 99syl 17 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧))
101100oveq2d 7368 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
102101eqeq2d 2744 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → ((lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))) ↔ (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧))))
103102adantr 480 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → ((lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))) ↔ (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧))))
10490, 103mpbird 257 . . . . . . 7 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))))
105104exp31 419 . . . . . 6 (𝑦 ∈ Fin → (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))))))
106105com23 86 . . . . 5 (𝑦 ∈ Fin → (((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦))) → (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))))))
10711, 18, 25, 32, 45, 106findcard2 9081 . . . 4 (𝑍 ∈ Fin → ((𝑍 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍))))
108107expd 415 . . 3 (𝑍 ∈ Fin → (𝑍 ⊆ ℤ → ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍)))))
109108impcom 407 . 2 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍))))
110109impcom 407 1 (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  cun 3896  wss 3898  c0 4282  {csn 4575   class class class wbr 5093  cfv 6486  (class class class)co 7352  Fincfn 8875  cr 11012  0cc0 11013  1c1 11014  cle 11154  0cn0 12388  cz 12475  abscabs 15143   lcm clcm 16501  lcmclcmf 16502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-prod 15813  df-dvds 16166  df-gcd 16408  df-lcm 16503  df-lcmf 16504
This theorem is referenced by:  lcmfass  16559
  Copyright terms: Public domain W3C validator