MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfun Structured version   Visualization version   GIF version

Theorem lcmfun 16622
Description: The lcm function for a union of sets of integers. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
lcmfun (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍)))

Proof of Theorem lcmfun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cleq1lem 14955 . . . . . 6 (𝑥 = ∅ → ((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) ↔ (∅ ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))))
2 uneq2 4128 . . . . . . . . 9 (𝑥 = ∅ → (𝑌𝑥) = (𝑌 ∪ ∅))
3 un0 4360 . . . . . . . . 9 (𝑌 ∪ ∅) = 𝑌
42, 3eqtrdi 2781 . . . . . . . 8 (𝑥 = ∅ → (𝑌𝑥) = 𝑌)
54fveq2d 6865 . . . . . . 7 (𝑥 = ∅ → (lcm‘(𝑌𝑥)) = (lcm𝑌))
6 fveq2 6861 . . . . . . . . 9 (𝑥 = ∅ → (lcm𝑥) = (lcm‘∅))
7 lcmf0 16611 . . . . . . . . 9 (lcm‘∅) = 1
86, 7eqtrdi 2781 . . . . . . . 8 (𝑥 = ∅ → (lcm𝑥) = 1)
98oveq2d 7406 . . . . . . 7 (𝑥 = ∅ → ((lcm𝑌) lcm (lcm𝑥)) = ((lcm𝑌) lcm 1))
105, 9eqeq12d 2746 . . . . . 6 (𝑥 = ∅ → ((lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥)) ↔ (lcm𝑌) = ((lcm𝑌) lcm 1)))
111, 10imbi12d 344 . . . . 5 (𝑥 = ∅ → (((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥))) ↔ ((∅ ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm𝑌) = ((lcm𝑌) lcm 1))))
12 cleq1lem 14955 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) ↔ (𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))))
13 uneq2 4128 . . . . . . . 8 (𝑥 = 𝑦 → (𝑌𝑥) = (𝑌𝑦))
1413fveq2d 6865 . . . . . . 7 (𝑥 = 𝑦 → (lcm‘(𝑌𝑥)) = (lcm‘(𝑌𝑦)))
15 fveq2 6861 . . . . . . . 8 (𝑥 = 𝑦 → (lcm𝑥) = (lcm𝑦))
1615oveq2d 7406 . . . . . . 7 (𝑥 = 𝑦 → ((lcm𝑌) lcm (lcm𝑥)) = ((lcm𝑌) lcm (lcm𝑦)))
1714, 16eqeq12d 2746 . . . . . 6 (𝑥 = 𝑦 → ((lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥)) ↔ (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦))))
1812, 17imbi12d 344 . . . . 5 (𝑥 = 𝑦 → (((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥))) ↔ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))))
19 cleq1lem 14955 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) ↔ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))))
20 uneq2 4128 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑌𝑥) = (𝑌 ∪ (𝑦 ∪ {𝑧})))
2120fveq2d 6865 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (lcm‘(𝑌𝑥)) = (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))))
22 fveq2 6861 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (lcm𝑥) = (lcm‘(𝑦 ∪ {𝑧})))
2322oveq2d 7406 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm𝑌) lcm (lcm𝑥)) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))))
2421, 23eqeq12d 2746 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥)) ↔ (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧})))))
2519, 24imbi12d 344 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥))) ↔ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))))))
26 cleq1lem 14955 . . . . . 6 (𝑥 = 𝑍 → ((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) ↔ (𝑍 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))))
27 uneq2 4128 . . . . . . . 8 (𝑥 = 𝑍 → (𝑌𝑥) = (𝑌𝑍))
2827fveq2d 6865 . . . . . . 7 (𝑥 = 𝑍 → (lcm‘(𝑌𝑥)) = (lcm‘(𝑌𝑍)))
29 fveq2 6861 . . . . . . . 8 (𝑥 = 𝑍 → (lcm𝑥) = (lcm𝑍))
3029oveq2d 7406 . . . . . . 7 (𝑥 = 𝑍 → ((lcm𝑌) lcm (lcm𝑥)) = ((lcm𝑌) lcm (lcm𝑍)))
3128, 30eqeq12d 2746 . . . . . 6 (𝑥 = 𝑍 → ((lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥)) ↔ (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍))))
3226, 31imbi12d 344 . . . . 5 (𝑥 = 𝑍 → (((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥))) ↔ ((𝑍 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍)))))
33 lcmfcl 16605 . . . . . . . . . 10 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm𝑌) ∈ ℕ0)
3433nn0zd 12562 . . . . . . . . 9 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm𝑌) ∈ ℤ)
35 lcm1 16587 . . . . . . . . 9 ((lcm𝑌) ∈ ℤ → ((lcm𝑌) lcm 1) = (abs‘(lcm𝑌)))
3634, 35syl 17 . . . . . . . 8 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → ((lcm𝑌) lcm 1) = (abs‘(lcm𝑌)))
37 nn0re 12458 . . . . . . . . . . 11 ((lcm𝑌) ∈ ℕ0 → (lcm𝑌) ∈ ℝ)
38 nn0ge0 12474 . . . . . . . . . . 11 ((lcm𝑌) ∈ ℕ0 → 0 ≤ (lcm𝑌))
3937, 38jca 511 . . . . . . . . . 10 ((lcm𝑌) ∈ ℕ0 → ((lcm𝑌) ∈ ℝ ∧ 0 ≤ (lcm𝑌)))
4033, 39syl 17 . . . . . . . . 9 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → ((lcm𝑌) ∈ ℝ ∧ 0 ≤ (lcm𝑌)))
41 absid 15269 . . . . . . . . 9 (((lcm𝑌) ∈ ℝ ∧ 0 ≤ (lcm𝑌)) → (abs‘(lcm𝑌)) = (lcm𝑌))
4240, 41syl 17 . . . . . . . 8 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (abs‘(lcm𝑌)) = (lcm𝑌))
4336, 42eqtrd 2765 . . . . . . 7 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → ((lcm𝑌) lcm 1) = (lcm𝑌))
4443adantl 481 . . . . . 6 ((∅ ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → ((lcm𝑌) lcm 1) = (lcm𝑌))
4544eqcomd 2736 . . . . 5 ((∅ ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm𝑌) = ((lcm𝑌) lcm 1))
46 unass 4138 . . . . . . . . . . . . . 14 ((𝑌𝑦) ∪ {𝑧}) = (𝑌 ∪ (𝑦 ∪ {𝑧}))
4746eqcomi 2739 . . . . . . . . . . . . 13 (𝑌 ∪ (𝑦 ∪ {𝑧})) = ((𝑌𝑦) ∪ {𝑧})
4847a1i 11 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑌 ∪ (𝑦 ∪ {𝑧})) = ((𝑌𝑦) ∪ {𝑧}))
4948fveq2d 6865 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = (lcm‘((𝑌𝑦) ∪ {𝑧})))
50 simpl 482 . . . . . . . . . . . . . . 15 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → 𝑌 ⊆ ℤ)
5150adantl 481 . . . . . . . . . . . . . 14 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → 𝑌 ⊆ ℤ)
52 unss 4156 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℤ)
53 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → 𝑦 ⊆ ℤ)
5452, 53sylbir 235 . . . . . . . . . . . . . . 15 ((𝑦 ∪ {𝑧}) ⊆ ℤ → 𝑦 ⊆ ℤ)
5554adantr 480 . . . . . . . . . . . . . 14 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → 𝑦 ⊆ ℤ)
5651, 55unssd 4158 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (𝑌𝑦) ⊆ ℤ)
5756adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑌𝑦) ⊆ ℤ)
58 unfi 9141 . . . . . . . . . . . . . . . 16 ((𝑌 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑌𝑦) ∈ Fin)
5958ex 412 . . . . . . . . . . . . . . 15 (𝑌 ∈ Fin → (𝑦 ∈ Fin → (𝑌𝑦) ∈ Fin))
6059adantl 481 . . . . . . . . . . . . . 14 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (𝑦 ∈ Fin → (𝑌𝑦) ∈ Fin))
6160adantl 481 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (𝑦 ∈ Fin → (𝑌𝑦) ∈ Fin))
6261impcom 407 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑌𝑦) ∈ Fin)
63 vex 3454 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
6463snss 4752 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℤ ↔ {𝑧} ⊆ ℤ)
6564biimpri 228 . . . . . . . . . . . . . . . 16 ({𝑧} ⊆ ℤ → 𝑧 ∈ ℤ)
6665adantl 481 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → 𝑧 ∈ ℤ)
6752, 66sylbir 235 . . . . . . . . . . . . . 14 ((𝑦 ∪ {𝑧}) ⊆ ℤ → 𝑧 ∈ ℤ)
6867adantr 480 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → 𝑧 ∈ ℤ)
6968adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → 𝑧 ∈ ℤ)
70 lcmfunsn 16621 . . . . . . . . . . . 12 (((𝑌𝑦) ⊆ ℤ ∧ (𝑌𝑦) ∈ Fin ∧ 𝑧 ∈ ℤ) → (lcm‘((𝑌𝑦) ∪ {𝑧})) = ((lcm‘(𝑌𝑦)) lcm 𝑧))
7157, 62, 69, 70syl3anc 1373 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm‘((𝑌𝑦) ∪ {𝑧})) = ((lcm‘(𝑌𝑦)) lcm 𝑧))
7249, 71eqtrd 2765 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm‘(𝑌𝑦)) lcm 𝑧))
7372adantr 480 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm‘(𝑌𝑦)) lcm 𝑧))
7454anim1i 615 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)))
7574adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)))
76 id 22 . . . . . . . . . . . 12 (((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦))) → ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦))))
7775, 76mpan9 506 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))
7877oveq1d 7405 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → ((lcm‘(𝑌𝑦)) lcm 𝑧) = (((lcm𝑌) lcm (lcm𝑦)) lcm 𝑧))
7934adantl 481 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm𝑌) ∈ ℤ)
8079adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm𝑌) ∈ ℤ)
8155anim2i 617 . . . . . . . . . . . . . . 15 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ ℤ))
8281ancomd 461 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin))
83 lcmfcl 16605 . . . . . . . . . . . . . 14 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℕ0)
8482, 83syl 17 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm𝑦) ∈ ℕ0)
8584nn0zd 12562 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm𝑦) ∈ ℤ)
86 lcmass 16591 . . . . . . . . . . . 12 (((lcm𝑌) ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((lcm𝑌) lcm (lcm𝑦)) lcm 𝑧) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
8780, 85, 69, 86syl3anc 1373 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (((lcm𝑌) lcm (lcm𝑦)) lcm 𝑧) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
8887adantr 480 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → (((lcm𝑌) lcm (lcm𝑦)) lcm 𝑧) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
8978, 88eqtrd 2765 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → ((lcm‘(𝑌𝑦)) lcm 𝑧) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
9073, 89eqtrd 2765 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
9153adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ∧ 𝑦 ∈ Fin) → 𝑦 ⊆ ℤ)
92 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin)
9366adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ∧ 𝑦 ∈ Fin) → 𝑧 ∈ ℤ)
9491, 92, 933jca 1128 . . . . . . . . . . . . . . . 16 (((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ∧ 𝑦 ∈ Fin) → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ))
9594ex 412 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → (𝑦 ∈ Fin → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ)))
9652, 95sylbir 235 . . . . . . . . . . . . . 14 ((𝑦 ∪ {𝑧}) ⊆ ℤ → (𝑦 ∈ Fin → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ)))
9796adantr 480 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (𝑦 ∈ Fin → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ)))
9897impcom 407 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ))
99 lcmfunsn 16621 . . . . . . . . . . . 12 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧))
10098, 99syl 17 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧))
101100oveq2d 7406 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
102101eqeq2d 2741 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → ((lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))) ↔ (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧))))
103102adantr 480 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → ((lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))) ↔ (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧))))
10490, 103mpbird 257 . . . . . . 7 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))))
105104exp31 419 . . . . . 6 (𝑦 ∈ Fin → (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))))))
106105com23 86 . . . . 5 (𝑦 ∈ Fin → (((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦))) → (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))))))
10711, 18, 25, 32, 45, 106findcard2 9134 . . . 4 (𝑍 ∈ Fin → ((𝑍 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍))))
108107expd 415 . . 3 (𝑍 ∈ Fin → (𝑍 ⊆ ℤ → ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍)))))
109108impcom 407 . 2 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍))))
110109impcom 407 1 (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cun 3915  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  Fincfn 8921  cr 11074  0cc0 11075  1c1 11076  cle 11216  0cn0 12449  cz 12536  abscabs 15207   lcm clcm 16565  lcmclcmf 16566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-prod 15877  df-dvds 16230  df-gcd 16472  df-lcm 16567  df-lcmf 16568
This theorem is referenced by:  lcmfass  16623
  Copyright terms: Public domain W3C validator