Step | Hyp | Ref
| Expression |
1 | | isnrm 22514 |
. . . . 5
⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝐽 ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑦)∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦))) |
2 | | pweq 4552 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) |
3 | 2 | ineq2d 4149 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → ((Clsd‘𝐽) ∩ 𝒫 𝑦) = ((Clsd‘𝐽) ∩ 𝒫 𝐴)) |
4 | | sseq2 3949 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → (((cls‘𝐽)‘𝑥) ⊆ 𝑦 ↔ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)) |
5 | 4 | anbi2d 628 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → ((𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
6 | 5 | rexbidv 3169 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
7 | 3, 6 | raleqbidv 3338 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑦)∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
8 | 7 | rspccv 3560 |
. . . . 5
⊢
(∀𝑦 ∈
𝐽 ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑦)∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) → (𝐴 ∈ 𝐽 → ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
9 | 1, 8 | simplbiim 504 |
. . . 4
⊢ (𝐽 ∈ Nrm → (𝐴 ∈ 𝐽 → ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
10 | | elin 3905 |
. . . . . 6
⊢ (𝐵 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴) ↔ (𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ 𝒫 𝐴)) |
11 | | elpwg 4539 |
. . . . . . 7
⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
12 | 11 | pm5.32i 574 |
. . . . . 6
⊢ ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ 𝒫 𝐴) ↔ (𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴)) |
13 | 10, 12 | bitri 274 |
. . . . 5
⊢ (𝐵 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴) ↔ (𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴)) |
14 | | cleq1lem 14721 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → ((𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) ↔ (𝐵 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
15 | 14 | rexbidv 3169 |
. . . . . 6
⊢ (𝑧 = 𝐵 → (∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) ↔ ∃𝑥 ∈ 𝐽 (𝐵 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
16 | 15 | rspccv 3560 |
. . . . 5
⊢
(∀𝑧 ∈
((Clsd‘𝐽) ∩
𝒫 𝐴)∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) → (𝐵 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴) → ∃𝑥 ∈ 𝐽 (𝐵 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
17 | 13, 16 | syl5bir 242 |
. . . 4
⊢
(∀𝑧 ∈
((Clsd‘𝐽) ∩
𝒫 𝐴)∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) → ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → ∃𝑥 ∈ 𝐽 (𝐵 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
18 | 9, 17 | syl6 35 |
. . 3
⊢ (𝐽 ∈ Nrm → (𝐴 ∈ 𝐽 → ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → ∃𝑥 ∈ 𝐽 (𝐵 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))) |
19 | 18 | exp4a 431 |
. 2
⊢ (𝐽 ∈ Nrm → (𝐴 ∈ 𝐽 → (𝐵 ∈ (Clsd‘𝐽) → (𝐵 ⊆ 𝐴 → ∃𝑥 ∈ 𝐽 (𝐵 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))))) |
20 | 19 | 3imp2 1347 |
1
⊢ ((𝐽 ∈ Nrm ∧ (𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐽 (𝐵 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)) |