MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkococnlem Structured version   Visualization version   GIF version

Theorem xkococnlem 22267
Description: Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
xkococn.1 𝐹 = (𝑓 ∈ (𝑆 Cn 𝑇), 𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝑔))
xkococn.s (𝜑𝑆 ∈ 𝑛-Locally Comp)
xkococn.k (𝜑𝐾 𝑅)
xkococn.c (𝜑 → (𝑅t 𝐾) ∈ Comp)
xkococn.v (𝜑𝑉𝑇)
xkococn.a (𝜑𝐴 ∈ (𝑆 Cn 𝑇))
xkococn.b (𝜑𝐵 ∈ (𝑅 Cn 𝑆))
xkococn.i (𝜑 → ((𝐴𝐵) “ 𝐾) ⊆ 𝑉)
Assertion
Ref Expression
xkococnlem (𝜑 → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑓,𝑔,,𝑧,𝑅   𝑆,𝑓,𝑔,𝑧   ,𝐾,𝑧   𝑇,𝑓,𝑔,,𝑧   𝑧,𝐹   ,𝑉,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑓,𝑔,)   𝐴(𝑓,𝑔,)   𝐵(𝑓,𝑔,)   𝑆()   𝐹(𝑓,𝑔,)   𝐾(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem xkococnlem
Dummy variables 𝑘 𝑎 𝑠 𝑢 𝑣 𝑤 𝑥 𝑦 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xkococn.b . . . 4 (𝜑𝐵 ∈ (𝑅 Cn 𝑆))
2 xkococn.c . . . 4 (𝜑 → (𝑅t 𝐾) ∈ Comp)
3 imacmp 22005 . . . 4 ((𝐵 ∈ (𝑅 Cn 𝑆) ∧ (𝑅t 𝐾) ∈ Comp) → (𝑆t (𝐵𝐾)) ∈ Comp)
41, 2, 3syl2anc 586 . . 3 (𝜑 → (𝑆t (𝐵𝐾)) ∈ Comp)
5 xkococn.s . . . . . . . . 9 (𝜑𝑆 ∈ 𝑛-Locally Comp)
65adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵𝐾)) → 𝑆 ∈ 𝑛-Locally Comp)
7 xkococn.a . . . . . . . . . 10 (𝜑𝐴 ∈ (𝑆 Cn 𝑇))
8 xkococn.v . . . . . . . . . 10 (𝜑𝑉𝑇)
9 cnima 21873 . . . . . . . . . 10 ((𝐴 ∈ (𝑆 Cn 𝑇) ∧ 𝑉𝑇) → (𝐴𝑉) ∈ 𝑆)
107, 8, 9syl2anc 586 . . . . . . . . 9 (𝜑 → (𝐴𝑉) ∈ 𝑆)
1110adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵𝐾)) → (𝐴𝑉) ∈ 𝑆)
12 imaco 6104 . . . . . . . . . . 11 ((𝐴𝐵) “ 𝐾) = (𝐴 “ (𝐵𝐾))
13 xkococn.i . . . . . . . . . . 11 (𝜑 → ((𝐴𝐵) “ 𝐾) ⊆ 𝑉)
1412, 13eqsstrrid 4016 . . . . . . . . . 10 (𝜑 → (𝐴 “ (𝐵𝐾)) ⊆ 𝑉)
15 eqid 2821 . . . . . . . . . . . . 13 𝑆 = 𝑆
16 eqid 2821 . . . . . . . . . . . . 13 𝑇 = 𝑇
1715, 16cnf 21854 . . . . . . . . . . . 12 (𝐴 ∈ (𝑆 Cn 𝑇) → 𝐴: 𝑆 𝑇)
18 ffun 6517 . . . . . . . . . . . 12 (𝐴: 𝑆 𝑇 → Fun 𝐴)
197, 17, 183syl 18 . . . . . . . . . . 11 (𝜑 → Fun 𝐴)
20 imassrn 5940 . . . . . . . . . . . . 13 (𝐵𝐾) ⊆ ran 𝐵
21 eqid 2821 . . . . . . . . . . . . . . 15 𝑅 = 𝑅
2221, 15cnf 21854 . . . . . . . . . . . . . 14 (𝐵 ∈ (𝑅 Cn 𝑆) → 𝐵: 𝑅 𝑆)
23 frn 6520 . . . . . . . . . . . . . 14 (𝐵: 𝑅 𝑆 → ran 𝐵 𝑆)
241, 22, 233syl 18 . . . . . . . . . . . . 13 (𝜑 → ran 𝐵 𝑆)
2520, 24sstrid 3978 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐾) ⊆ 𝑆)
26 fdm 6522 . . . . . . . . . . . . 13 (𝐴: 𝑆 𝑇 → dom 𝐴 = 𝑆)
277, 17, 263syl 18 . . . . . . . . . . . 12 (𝜑 → dom 𝐴 = 𝑆)
2825, 27sseqtrrd 4008 . . . . . . . . . . 11 (𝜑 → (𝐵𝐾) ⊆ dom 𝐴)
29 funimass3 6824 . . . . . . . . . . 11 ((Fun 𝐴 ∧ (𝐵𝐾) ⊆ dom 𝐴) → ((𝐴 “ (𝐵𝐾)) ⊆ 𝑉 ↔ (𝐵𝐾) ⊆ (𝐴𝑉)))
3019, 28, 29syl2anc 586 . . . . . . . . . 10 (𝜑 → ((𝐴 “ (𝐵𝐾)) ⊆ 𝑉 ↔ (𝐵𝐾) ⊆ (𝐴𝑉)))
3114, 30mpbid 234 . . . . . . . . 9 (𝜑 → (𝐵𝐾) ⊆ (𝐴𝑉))
3231sselda 3967 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵𝐾)) → 𝑥 ∈ (𝐴𝑉))
33 nlly2i 22084 . . . . . . . 8 ((𝑆 ∈ 𝑛-Locally Comp ∧ (𝐴𝑉) ∈ 𝑆𝑥 ∈ (𝐴𝑉)) → ∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑢𝑆 (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))
346, 11, 32, 33syl3anc 1367 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵𝐾)) → ∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑢𝑆 (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))
35 nllytop 22081 . . . . . . . . . . . . 13 (𝑆 ∈ 𝑛-Locally Comp → 𝑆 ∈ Top)
365, 35syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Top)
3736ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑆 ∈ Top)
38 imaexg 7620 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑅 Cn 𝑆) → (𝐵𝐾) ∈ V)
391, 38syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐾) ∈ V)
4039ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝐵𝐾) ∈ V)
41 simprl 769 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑢𝑆)
42 elrestr 16702 . . . . . . . . . . 11 ((𝑆 ∈ Top ∧ (𝐵𝐾) ∈ V ∧ 𝑢𝑆) → (𝑢 ∩ (𝐵𝐾)) ∈ (𝑆t (𝐵𝐾)))
4337, 40, 41, 42syl3anc 1367 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝑢 ∩ (𝐵𝐾)) ∈ (𝑆t (𝐵𝐾)))
44 simprr1 1217 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑥𝑢)
45 simpllr 774 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑥 ∈ (𝐵𝐾))
4644, 45elind 4171 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑥 ∈ (𝑢 ∩ (𝐵𝐾)))
47 inss1 4205 . . . . . . . . . . . 12 (𝑢 ∩ (𝐵𝐾)) ⊆ 𝑢
48 elpwi 4548 . . . . . . . . . . . . . . 15 (𝑠 ∈ 𝒫 (𝐴𝑉) → 𝑠 ⊆ (𝐴𝑉))
4948ad2antlr 725 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑠 ⊆ (𝐴𝑉))
50 elssuni 4868 . . . . . . . . . . . . . . . 16 ((𝐴𝑉) ∈ 𝑆 → (𝐴𝑉) ⊆ 𝑆)
5110, 50syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝑉) ⊆ 𝑆)
5251ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝐴𝑉) ⊆ 𝑆)
5349, 52sstrd 3977 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑠 𝑆)
54 simprr2 1218 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑢𝑠)
5515ssntr 21666 . . . . . . . . . . . . 13 (((𝑆 ∈ Top ∧ 𝑠 𝑆) ∧ (𝑢𝑆𝑢𝑠)) → 𝑢 ⊆ ((int‘𝑆)‘𝑠))
5637, 53, 41, 54, 55syl22anc 836 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑢 ⊆ ((int‘𝑆)‘𝑠))
5747, 56sstrid 3978 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠))
58 simprr3 1219 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝑆t 𝑠) ∈ Comp)
5957, 58jca 514 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → ((𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))
60 eleq2 2901 . . . . . . . . . . . 12 (𝑦 = (𝑢 ∩ (𝐵𝐾)) → (𝑥𝑦𝑥 ∈ (𝑢 ∩ (𝐵𝐾))))
61 cleq1lem 14342 . . . . . . . . . . . 12 (𝑦 = (𝑢 ∩ (𝐵𝐾)) → ((𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp) ↔ ((𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
6260, 61anbi12d 632 . . . . . . . . . . 11 (𝑦 = (𝑢 ∩ (𝐵𝐾)) → ((𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ (𝑥 ∈ (𝑢 ∩ (𝐵𝐾)) ∧ ((𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))))
6362rspcev 3623 . . . . . . . . . 10 (((𝑢 ∩ (𝐵𝐾)) ∈ (𝑆t (𝐵𝐾)) ∧ (𝑥 ∈ (𝑢 ∩ (𝐵𝐾)) ∧ ((𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))) → ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
6443, 46, 59, 63syl12anc 834 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
6564rexlimdvaa 3285 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) → (∃𝑢𝑆 (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp) → ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))))
6665reximdva 3274 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵𝐾)) → (∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑢𝑆 (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp) → ∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))))
6734, 66mpd 15 . . . . . 6 ((𝜑𝑥 ∈ (𝐵𝐾)) → ∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
68 rexcom 3355 . . . . . . 7 (∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ ∃𝑦 ∈ (𝑆t (𝐵𝐾))∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
69 r19.42v 3350 . . . . . . . 8 (∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ (𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7069rexbii 3247 . . . . . . 7 (∃𝑦 ∈ (𝑆t (𝐵𝐾))∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7168, 70bitri 277 . . . . . 6 (∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7267, 71sylib 220 . . . . 5 ((𝜑𝑥 ∈ (𝐵𝐾)) → ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7372ralrimiva 3182 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐵𝐾)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7415restuni 21770 . . . . . 6 ((𝑆 ∈ Top ∧ (𝐵𝐾) ⊆ 𝑆) → (𝐵𝐾) = (𝑆t (𝐵𝐾)))
7536, 25, 74syl2anc 586 . . . . 5 (𝜑 → (𝐵𝐾) = (𝑆t (𝐵𝐾)))
7675raleqdv 3415 . . . 4 (𝜑 → (∀𝑥 ∈ (𝐵𝐾)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ ∀𝑥 (𝑆t (𝐵𝐾))∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))))
7773, 76mpbid 234 . . 3 (𝜑 → ∀𝑥 (𝑆t (𝐵𝐾))∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
78 eqid 2821 . . . 4 (𝑆t (𝐵𝐾)) = (𝑆t (𝐵𝐾))
79 fveq2 6670 . . . . . 6 (𝑠 = (𝑘𝑦) → ((int‘𝑆)‘𝑠) = ((int‘𝑆)‘(𝑘𝑦)))
8079sseq2d 3999 . . . . 5 (𝑠 = (𝑘𝑦) → (𝑦 ⊆ ((int‘𝑆)‘𝑠) ↔ 𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦))))
81 oveq2 7164 . . . . . 6 (𝑠 = (𝑘𝑦) → (𝑆t 𝑠) = (𝑆t (𝑘𝑦)))
8281eleq1d 2897 . . . . 5 (𝑠 = (𝑘𝑦) → ((𝑆t 𝑠) ∈ Comp ↔ (𝑆t (𝑘𝑦)) ∈ Comp))
8380, 82anbi12d 632 . . . 4 (𝑠 = (𝑘𝑦) → ((𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp) ↔ (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))
8478, 83cmpcovf 21999 . . 3 (((𝑆t (𝐵𝐾)) ∈ Comp ∧ ∀𝑥 (𝑆t (𝐵𝐾))∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))) → ∃𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)( (𝑆t (𝐵𝐾)) = 𝑤 ∧ ∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))))
854, 77, 84syl2anc 586 . 2 (𝜑 → ∃𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)( (𝑆t (𝐵𝐾)) = 𝑤 ∧ ∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))))
8675adantr 483 . . . . . . 7 ((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) → (𝐵𝐾) = (𝑆t (𝐵𝐾)))
8786eqeq1d 2823 . . . . . 6 ((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) → ((𝐵𝐾) = 𝑤 (𝑆t (𝐵𝐾)) = 𝑤))
8887biimpar 480 . . . . 5 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ (𝑆t (𝐵𝐾)) = 𝑤) → (𝐵𝐾) = 𝑤)
8936ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑆 ∈ Top)
90 cntop2 21849 . . . . . . . . . . . 12 (𝐴 ∈ (𝑆 Cn 𝑇) → 𝑇 ∈ Top)
917, 90syl 17 . . . . . . . . . . 11 (𝜑𝑇 ∈ Top)
9291ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑇 ∈ Top)
93 xkotop 22196 . . . . . . . . . 10 ((𝑆 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑆) ∈ Top)
9489, 92, 93syl2anc 586 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑇ko 𝑆) ∈ Top)
95 cntop1 21848 . . . . . . . . . . . 12 (𝐵 ∈ (𝑅 Cn 𝑆) → 𝑅 ∈ Top)
961, 95syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Top)
9796ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑅 ∈ Top)
98 xkotop 22196 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ Top)
9997, 89, 98syl2anc 586 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑆ko 𝑅) ∈ Top)
100 simprrl 779 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑘:𝑤⟶𝒫 (𝐴𝑉))
101100frnd 6521 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ran 𝑘 ⊆ 𝒫 (𝐴𝑉))
102 sspwuni 5022 . . . . . . . . . . . 12 (ran 𝑘 ⊆ 𝒫 (𝐴𝑉) ↔ ran 𝑘 ⊆ (𝐴𝑉))
103101, 102sylib 220 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ran 𝑘 ⊆ (𝐴𝑉))
10410ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐴𝑉) ∈ 𝑆)
105104, 50syl 17 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐴𝑉) ⊆ 𝑆)
106103, 105sstrd 3977 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ran 𝑘 𝑆)
107 ffn 6514 . . . . . . . . . . . . 13 (𝑘:𝑤⟶𝒫 (𝐴𝑉) → 𝑘 Fn 𝑤)
108 fniunfv 7006 . . . . . . . . . . . . 13 (𝑘 Fn 𝑤 𝑦𝑤 (𝑘𝑦) = ran 𝑘)
109100, 107, 1083syl 18 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝑘𝑦) = ran 𝑘)
110109oveq2d 7172 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑆t 𝑦𝑤 (𝑘𝑦)) = (𝑆t ran 𝑘))
111 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin))
112111elin2d 4176 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑤 ∈ Fin)
113 simprrr 780 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))
114 simpr 487 . . . . . . . . . . . . . 14 ((𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp) → (𝑆t (𝑘𝑦)) ∈ Comp)
115114ralimi 3160 . . . . . . . . . . . . 13 (∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp) → ∀𝑦𝑤 (𝑆t (𝑘𝑦)) ∈ Comp)
116113, 115syl 17 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 (𝑆t (𝑘𝑦)) ∈ Comp)
11715fiuncmp 22012 . . . . . . . . . . . 12 ((𝑆 ∈ Top ∧ 𝑤 ∈ Fin ∧ ∀𝑦𝑤 (𝑆t (𝑘𝑦)) ∈ Comp) → (𝑆t 𝑦𝑤 (𝑘𝑦)) ∈ Comp)
11889, 112, 116, 117syl3anc 1367 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑆t 𝑦𝑤 (𝑘𝑦)) ∈ Comp)
119110, 118eqeltrrd 2914 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑆t ran 𝑘) ∈ Comp)
1208ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑉𝑇)
12115, 89, 92, 106, 119, 120xkoopn 22197 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ∈ (𝑇ko 𝑆))
122 xkococn.k . . . . . . . . . . 11 (𝜑𝐾 𝑅)
123122ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐾 𝑅)
1242ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑅t 𝐾) ∈ Comp)
125109, 106eqsstrd 4005 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝑘𝑦) ⊆ 𝑆)
126 iunss 4969 . . . . . . . . . . . . 13 ( 𝑦𝑤 (𝑘𝑦) ⊆ 𝑆 ↔ ∀𝑦𝑤 (𝑘𝑦) ⊆ 𝑆)
127125, 126sylib 220 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 (𝑘𝑦) ⊆ 𝑆)
12815ntropn 21657 . . . . . . . . . . . . . 14 ((𝑆 ∈ Top ∧ (𝑘𝑦) ⊆ 𝑆) → ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆)
129128ex 415 . . . . . . . . . . . . 13 (𝑆 ∈ Top → ((𝑘𝑦) ⊆ 𝑆 → ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆))
130129ralimdv 3178 . . . . . . . . . . . 12 (𝑆 ∈ Top → (∀𝑦𝑤 (𝑘𝑦) ⊆ 𝑆 → ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆))
13189, 127, 130sylc 65 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆)
132 iunopn 21506 . . . . . . . . . . 11 ((𝑆 ∈ Top ∧ ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆)
13389, 131, 132syl2anc 586 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆)
13421, 97, 89, 123, 124, 133xkoopn 22197 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ∈ (𝑆ko 𝑅))
135 txopn 22210 . . . . . . . . 9 ((((𝑇ko 𝑆) ∈ Top ∧ (𝑆ko 𝑅) ∈ Top) ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ∈ (𝑇ko 𝑆) ∧ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ∈ (𝑆ko 𝑅))) → ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)))
13694, 99, 121, 134, 135syl22anc 836 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)))
137 imaeq1 5924 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 ran 𝑘) = (𝐴 ran 𝑘))
138137sseq1d 3998 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑎 ran 𝑘) ⊆ 𝑉 ↔ (𝐴 ran 𝑘) ⊆ 𝑉))
1397ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐴 ∈ (𝑆 Cn 𝑇))
140 imaiun 7004 . . . . . . . . . . . 12 (𝐴 𝑦𝑤 (𝑘𝑦)) = 𝑦𝑤 (𝐴 “ (𝑘𝑦))
141109imaeq2d 5929 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐴 𝑦𝑤 (𝑘𝑦)) = (𝐴 ran 𝑘))
142140, 141syl5eqr 2870 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝐴 “ (𝑘𝑦)) = (𝐴 ran 𝑘))
143109, 103eqsstrd 4005 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉))
14419ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → Fun 𝐴)
145100, 107syl 17 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑘 Fn 𝑤)
14627ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → dom 𝐴 = 𝑆)
147106, 146sseqtrrd 4008 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ran 𝑘 ⊆ dom 𝐴)
148 simpl1 1187 . . . . . . . . . . . . . . . 16 (((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) ∧ 𝑦𝑤) → Fun 𝐴)
1491083ad2ant2 1130 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → 𝑦𝑤 (𝑘𝑦) = ran 𝑘)
150 simp3 1134 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → ran 𝑘 ⊆ dom 𝐴)
151149, 150eqsstrd 4005 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → 𝑦𝑤 (𝑘𝑦) ⊆ dom 𝐴)
152 iunss 4969 . . . . . . . . . . . . . . . . . 18 ( 𝑦𝑤 (𝑘𝑦) ⊆ dom 𝐴 ↔ ∀𝑦𝑤 (𝑘𝑦) ⊆ dom 𝐴)
153151, 152sylib 220 . . . . . . . . . . . . . . . . 17 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → ∀𝑦𝑤 (𝑘𝑦) ⊆ dom 𝐴)
154153r19.21bi 3208 . . . . . . . . . . . . . . . 16 (((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) ∧ 𝑦𝑤) → (𝑘𝑦) ⊆ dom 𝐴)
155 funimass3 6824 . . . . . . . . . . . . . . . 16 ((Fun 𝐴 ∧ (𝑘𝑦) ⊆ dom 𝐴) → ((𝐴 “ (𝑘𝑦)) ⊆ 𝑉 ↔ (𝑘𝑦) ⊆ (𝐴𝑉)))
156148, 154, 155syl2anc 586 . . . . . . . . . . . . . . 15 (((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) ∧ 𝑦𝑤) → ((𝐴 “ (𝑘𝑦)) ⊆ 𝑉 ↔ (𝑘𝑦) ⊆ (𝐴𝑉)))
157156ralbidva 3196 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → (∀𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉 ↔ ∀𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉)))
158 iunss 4969 . . . . . . . . . . . . . 14 ( 𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉 ↔ ∀𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉)
159 iunss 4969 . . . . . . . . . . . . . 14 ( 𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉) ↔ ∀𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉))
160157, 158, 1593bitr4g 316 . . . . . . . . . . . . 13 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → ( 𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉 𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉)))
161144, 145, 147, 160syl3anc 1367 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ( 𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉 𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉)))
162143, 161mpbird 259 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉)
163142, 162eqsstrrd 4006 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐴 ran 𝑘) ⊆ 𝑉)
164138, 139, 163elrabd 3682 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐴 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉})
165 imaeq1 5924 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏𝐾) = (𝐵𝐾))
166165sseq1d 3998 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ↔ (𝐵𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))
1671ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐵 ∈ (𝑅 Cn 𝑆))
168 simprl 769 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐵𝐾) = 𝑤)
169 uniiun 4982 . . . . . . . . . . . 12 𝑤 = 𝑦𝑤 𝑦
170168, 169syl6eq 2872 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐵𝐾) = 𝑦𝑤 𝑦)
171 simpl 485 . . . . . . . . . . . . 13 ((𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp) → 𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)))
172171ralimi 3160 . . . . . . . . . . . 12 (∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp) → ∀𝑦𝑤 𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)))
173 ss2iun 4937 . . . . . . . . . . . 12 (∀𝑦𝑤 𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) → 𝑦𝑤 𝑦 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))
174113, 172, 1733syl 18 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 𝑦 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))
175170, 174eqsstrd 4005 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐵𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))
176166, 167, 175elrabd 3682 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐵 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})
177164, 176opelxpd 5593 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ⟨𝐴, 𝐵⟩ ∈ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}))
178 imaeq1 5924 . . . . . . . . . . . . . . 15 (𝑎 = 𝑢 → (𝑎 ran 𝑘) = (𝑢 ran 𝑘))
179178sseq1d 3998 . . . . . . . . . . . . . 14 (𝑎 = 𝑢 → ((𝑎 ran 𝑘) ⊆ 𝑉 ↔ (𝑢 ran 𝑘) ⊆ 𝑉))
180179elrab 3680 . . . . . . . . . . . . 13 (𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ↔ (𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉))
181 imaeq1 5924 . . . . . . . . . . . . . . 15 (𝑏 = 𝑣 → (𝑏𝐾) = (𝑣𝐾))
182181sseq1d 3998 . . . . . . . . . . . . . 14 (𝑏 = 𝑣 → ((𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ↔ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))
183182elrab 3680 . . . . . . . . . . . . 13 (𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ↔ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))
184180, 183anbi12i 628 . . . . . . . . . . . 12 ((𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ∧ 𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ↔ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))))
185 simprll 777 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → 𝑢 ∈ (𝑆 Cn 𝑇))
186 simprrl 779 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → 𝑣 ∈ (𝑅 Cn 𝑆))
187 coeq1 5728 . . . . . . . . . . . . . . 15 (𝑓 = 𝑢 → (𝑓𝑔) = (𝑢𝑔))
188 coeq2 5729 . . . . . . . . . . . . . . 15 (𝑔 = 𝑣 → (𝑢𝑔) = (𝑢𝑣))
189 xkococn.1 . . . . . . . . . . . . . . 15 𝐹 = (𝑓 ∈ (𝑆 Cn 𝑇), 𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝑔))
190 vex 3497 . . . . . . . . . . . . . . . 16 𝑢 ∈ V
191 vex 3497 . . . . . . . . . . . . . . . 16 𝑣 ∈ V
192190, 191coex 7635 . . . . . . . . . . . . . . 15 (𝑢𝑣) ∈ V
193187, 188, 189, 192ovmpo 7310 . . . . . . . . . . . . . 14 ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ 𝑣 ∈ (𝑅 Cn 𝑆)) → (𝑢𝐹𝑣) = (𝑢𝑣))
194185, 186, 193syl2anc 586 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢𝐹𝑣) = (𝑢𝑣))
195 imaeq1 5924 . . . . . . . . . . . . . . 15 ( = (𝑢𝑣) → (𝐾) = ((𝑢𝑣) “ 𝐾))
196195sseq1d 3998 . . . . . . . . . . . . . 14 ( = (𝑢𝑣) → ((𝐾) ⊆ 𝑉 ↔ ((𝑢𝑣) “ 𝐾) ⊆ 𝑉))
197 cnco 21874 . . . . . . . . . . . . . . 15 ((𝑣 ∈ (𝑅 Cn 𝑆) ∧ 𝑢 ∈ (𝑆 Cn 𝑇)) → (𝑢𝑣) ∈ (𝑅 Cn 𝑇))
198186, 185, 197syl2anc 586 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢𝑣) ∈ (𝑅 Cn 𝑇))
199 imaco 6104 . . . . . . . . . . . . . . 15 ((𝑢𝑣) “ 𝐾) = (𝑢 “ (𝑣𝐾))
200 simprrr 780 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))
20115ntrss2 21665 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ Top ∧ (𝑘𝑦) ⊆ 𝑆) → ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦))
202201ex 415 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 ∈ Top → ((𝑘𝑦) ⊆ 𝑆 → ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦)))
203202ralimdv 3178 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ Top → (∀𝑦𝑤 (𝑘𝑦) ⊆ 𝑆 → ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦)))
20489, 127, 203sylc 65 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦))
205 ss2iun 4937 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ 𝑦𝑤 (𝑘𝑦))
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ 𝑦𝑤 (𝑘𝑦))
207206, 109sseqtrd 4007 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ ran 𝑘)
208207adantr 483 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ ran 𝑘)
209200, 208sstrd 3977 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑣𝐾) ⊆ ran 𝑘)
210 imass2 5965 . . . . . . . . . . . . . . . . 17 ((𝑣𝐾) ⊆ ran 𝑘 → (𝑢 “ (𝑣𝐾)) ⊆ (𝑢 ran 𝑘))
211209, 210syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢 “ (𝑣𝐾)) ⊆ (𝑢 ran 𝑘))
212 simprlr 778 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢 ran 𝑘) ⊆ 𝑉)
213211, 212sstrd 3977 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢 “ (𝑣𝐾)) ⊆ 𝑉)
214199, 213eqsstrid 4015 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → ((𝑢𝑣) “ 𝐾) ⊆ 𝑉)
215196, 198, 214elrabd 3682 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
216194, 215eqeltrd 2913 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
217184, 216sylan2b 595 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ (𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ∧ 𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) → (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
218217ralrimivva 3191 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉}∀𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
219189mpofun 7276 . . . . . . . . . . 11 Fun 𝐹
220 ssrab2 4056 . . . . . . . . . . . . 13 {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ⊆ (𝑆 Cn 𝑇)
221 ssrab2 4056 . . . . . . . . . . . . 13 {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ⊆ (𝑅 Cn 𝑆)
222 xpss12 5570 . . . . . . . . . . . . 13 (({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ⊆ (𝑆 Cn 𝑇) ∧ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ⊆ (𝑅 Cn 𝑆)) → ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆)))
223220, 221, 222mp2an 690 . . . . . . . . . . . 12 ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))
224 vex 3497 . . . . . . . . . . . . . 14 𝑓 ∈ V
225 vex 3497 . . . . . . . . . . . . . 14 𝑔 ∈ V
226224, 225coex 7635 . . . . . . . . . . . . 13 (𝑓𝑔) ∈ V
227189, 226dmmpo 7769 . . . . . . . . . . . 12 dom 𝐹 = ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))
228223, 227sseqtrri 4004 . . . . . . . . . . 11 ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ dom 𝐹
229 funimassov 7325 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ dom 𝐹) → ((𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉} ↔ ∀𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉}∀𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))
230219, 228, 229mp2an 690 . . . . . . . . . 10 ((𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉} ↔ ∀𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉}∀𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
231218, 230sylibr 236 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
232 funimass3 6824 . . . . . . . . . 10 ((Fun 𝐹 ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ dom 𝐹) → ((𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉} ↔ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
233219, 228, 232mp2an 690 . . . . . . . . 9 ((𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉} ↔ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))
234231, 233sylib 220 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))
235 eleq2 2901 . . . . . . . . . 10 (𝑧 = ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) → (⟨𝐴, 𝐵⟩ ∈ 𝑧 ↔ ⟨𝐴, 𝐵⟩ ∈ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})))
236 sseq1 3992 . . . . . . . . . 10 (𝑧 = ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) → (𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}) ↔ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
237235, 236anbi12d 632 . . . . . . . . 9 (𝑧 = ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) → ((⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})) ↔ (⟨𝐴, 𝐵⟩ ∈ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
238237rspcev 3623 . . . . . . . 8 ((({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)) ∧ (⟨𝐴, 𝐵⟩ ∈ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
239136, 177, 234, 238syl12anc 834 . . . . . . 7 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
240239expr 459 . . . . . 6 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ (𝐵𝐾) = 𝑤) → ((𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
241240exlimdv 1934 . . . . 5 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ (𝐵𝐾) = 𝑤) → (∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
24288, 241syldan 593 . . . 4 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ (𝑆t (𝐵𝐾)) = 𝑤) → (∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
243242expimpd 456 . . 3 ((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) → (( (𝑆t (𝐵𝐾)) = 𝑤 ∧ ∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
244243rexlimdva 3284 . 2 (𝜑 → (∃𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)( (𝑆t (𝐵𝐾)) = 𝑤 ∧ ∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
24585, 244mpd 15 1 (𝜑 → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  cin 3935  wss 3936  𝒫 cpw 4539  cop 4573   cuni 4838   ciun 4919   × cxp 5553  ccnv 5554  dom cdm 5555  ran crn 5556  cima 5558  ccom 5559  Fun wfun 6349   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  Fincfn 8509  t crest 16694  Topctop 21501  intcnt 21625   Cn ccn 21832  Compccmp 21994  𝑛-Locally cnlly 22073   ×t ctx 22168  ko cxko 22169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-fin 8513  df-fi 8875  df-rest 16696  df-topgen 16717  df-top 21502  df-topon 21519  df-bases 21554  df-ntr 21628  df-nei 21706  df-cn 21835  df-cmp 21995  df-nlly 22075  df-tx 22170  df-xko 22171
This theorem is referenced by:  xkococn  22268
  Copyright terms: Public domain W3C validator