MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkococnlem Structured version   Visualization version   GIF version

Theorem xkococnlem 23575
Description: Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
xkococn.1 𝐹 = (𝑓 ∈ (𝑆 Cn 𝑇), 𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝑔))
xkococn.s (𝜑𝑆 ∈ 𝑛-Locally Comp)
xkococn.k (𝜑𝐾 𝑅)
xkococn.c (𝜑 → (𝑅t 𝐾) ∈ Comp)
xkococn.v (𝜑𝑉𝑇)
xkococn.a (𝜑𝐴 ∈ (𝑆 Cn 𝑇))
xkococn.b (𝜑𝐵 ∈ (𝑅 Cn 𝑆))
xkococn.i (𝜑 → ((𝐴𝐵) “ 𝐾) ⊆ 𝑉)
Assertion
Ref Expression
xkococnlem (𝜑 → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑓,𝑔,,𝑧,𝑅   𝑆,𝑓,𝑔,𝑧   ,𝐾,𝑧   𝑇,𝑓,𝑔,,𝑧   𝑧,𝐹   ,𝑉,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑓,𝑔,)   𝐴(𝑓,𝑔,)   𝐵(𝑓,𝑔,)   𝑆()   𝐹(𝑓,𝑔,)   𝐾(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem xkococnlem
Dummy variables 𝑘 𝑎 𝑠 𝑢 𝑣 𝑤 𝑥 𝑦 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xkococn.b . . . 4 (𝜑𝐵 ∈ (𝑅 Cn 𝑆))
2 xkococn.c . . . 4 (𝜑 → (𝑅t 𝐾) ∈ Comp)
3 imacmp 23313 . . . 4 ((𝐵 ∈ (𝑅 Cn 𝑆) ∧ (𝑅t 𝐾) ∈ Comp) → (𝑆t (𝐵𝐾)) ∈ Comp)
41, 2, 3syl2anc 584 . . 3 (𝜑 → (𝑆t (𝐵𝐾)) ∈ Comp)
5 xkococn.s . . . . . . . . 9 (𝜑𝑆 ∈ 𝑛-Locally Comp)
65adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵𝐾)) → 𝑆 ∈ 𝑛-Locally Comp)
7 xkococn.a . . . . . . . . . 10 (𝜑𝐴 ∈ (𝑆 Cn 𝑇))
8 xkococn.v . . . . . . . . . 10 (𝜑𝑉𝑇)
9 cnima 23181 . . . . . . . . . 10 ((𝐴 ∈ (𝑆 Cn 𝑇) ∧ 𝑉𝑇) → (𝐴𝑉) ∈ 𝑆)
107, 8, 9syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴𝑉) ∈ 𝑆)
1110adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵𝐾)) → (𝐴𝑉) ∈ 𝑆)
12 imaco 6203 . . . . . . . . . . 11 ((𝐴𝐵) “ 𝐾) = (𝐴 “ (𝐵𝐾))
13 xkococn.i . . . . . . . . . . 11 (𝜑 → ((𝐴𝐵) “ 𝐾) ⊆ 𝑉)
1412, 13eqsstrrid 3970 . . . . . . . . . 10 (𝜑 → (𝐴 “ (𝐵𝐾)) ⊆ 𝑉)
15 eqid 2733 . . . . . . . . . . . . 13 𝑆 = 𝑆
16 eqid 2733 . . . . . . . . . . . . 13 𝑇 = 𝑇
1715, 16cnf 23162 . . . . . . . . . . . 12 (𝐴 ∈ (𝑆 Cn 𝑇) → 𝐴: 𝑆 𝑇)
18 ffun 6659 . . . . . . . . . . . 12 (𝐴: 𝑆 𝑇 → Fun 𝐴)
197, 17, 183syl 18 . . . . . . . . . . 11 (𝜑 → Fun 𝐴)
20 imassrn 6024 . . . . . . . . . . . . 13 (𝐵𝐾) ⊆ ran 𝐵
21 eqid 2733 . . . . . . . . . . . . . . 15 𝑅 = 𝑅
2221, 15cnf 23162 . . . . . . . . . . . . . 14 (𝐵 ∈ (𝑅 Cn 𝑆) → 𝐵: 𝑅 𝑆)
23 frn 6663 . . . . . . . . . . . . . 14 (𝐵: 𝑅 𝑆 → ran 𝐵 𝑆)
241, 22, 233syl 18 . . . . . . . . . . . . 13 (𝜑 → ran 𝐵 𝑆)
2520, 24sstrid 3942 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐾) ⊆ 𝑆)
26 fdm 6665 . . . . . . . . . . . . 13 (𝐴: 𝑆 𝑇 → dom 𝐴 = 𝑆)
277, 17, 263syl 18 . . . . . . . . . . . 12 (𝜑 → dom 𝐴 = 𝑆)
2825, 27sseqtrrd 3968 . . . . . . . . . . 11 (𝜑 → (𝐵𝐾) ⊆ dom 𝐴)
29 funimass3 6993 . . . . . . . . . . 11 ((Fun 𝐴 ∧ (𝐵𝐾) ⊆ dom 𝐴) → ((𝐴 “ (𝐵𝐾)) ⊆ 𝑉 ↔ (𝐵𝐾) ⊆ (𝐴𝑉)))
3019, 28, 29syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐴 “ (𝐵𝐾)) ⊆ 𝑉 ↔ (𝐵𝐾) ⊆ (𝐴𝑉)))
3114, 30mpbid 232 . . . . . . . . 9 (𝜑 → (𝐵𝐾) ⊆ (𝐴𝑉))
3231sselda 3930 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵𝐾)) → 𝑥 ∈ (𝐴𝑉))
33 nlly2i 23392 . . . . . . . 8 ((𝑆 ∈ 𝑛-Locally Comp ∧ (𝐴𝑉) ∈ 𝑆𝑥 ∈ (𝐴𝑉)) → ∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑢𝑆 (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))
346, 11, 32, 33syl3anc 1373 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵𝐾)) → ∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑢𝑆 (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))
35 nllytop 23389 . . . . . . . . . . . . 13 (𝑆 ∈ 𝑛-Locally Comp → 𝑆 ∈ Top)
365, 35syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Top)
3736ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑆 ∈ Top)
38 imaexg 7849 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑅 Cn 𝑆) → (𝐵𝐾) ∈ V)
391, 38syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐾) ∈ V)
4039ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝐵𝐾) ∈ V)
41 simprl 770 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑢𝑆)
42 elrestr 17334 . . . . . . . . . . 11 ((𝑆 ∈ Top ∧ (𝐵𝐾) ∈ V ∧ 𝑢𝑆) → (𝑢 ∩ (𝐵𝐾)) ∈ (𝑆t (𝐵𝐾)))
4337, 40, 41, 42syl3anc 1373 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝑢 ∩ (𝐵𝐾)) ∈ (𝑆t (𝐵𝐾)))
44 simprr1 1222 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑥𝑢)
45 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑥 ∈ (𝐵𝐾))
4644, 45elind 4149 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑥 ∈ (𝑢 ∩ (𝐵𝐾)))
47 inss1 4186 . . . . . . . . . . . 12 (𝑢 ∩ (𝐵𝐾)) ⊆ 𝑢
48 elpwi 4556 . . . . . . . . . . . . . . 15 (𝑠 ∈ 𝒫 (𝐴𝑉) → 𝑠 ⊆ (𝐴𝑉))
4948ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑠 ⊆ (𝐴𝑉))
50 elssuni 4889 . . . . . . . . . . . . . . . 16 ((𝐴𝑉) ∈ 𝑆 → (𝐴𝑉) ⊆ 𝑆)
5110, 50syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝑉) ⊆ 𝑆)
5251ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝐴𝑉) ⊆ 𝑆)
5349, 52sstrd 3941 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑠 𝑆)
54 simprr2 1223 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑢𝑠)
5515ssntr 22974 . . . . . . . . . . . . 13 (((𝑆 ∈ Top ∧ 𝑠 𝑆) ∧ (𝑢𝑆𝑢𝑠)) → 𝑢 ⊆ ((int‘𝑆)‘𝑠))
5637, 53, 41, 54, 55syl22anc 838 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑢 ⊆ ((int‘𝑆)‘𝑠))
5747, 56sstrid 3942 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠))
58 simprr3 1224 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝑆t 𝑠) ∈ Comp)
5957, 58jca 511 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → ((𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))
60 eleq2 2822 . . . . . . . . . . . 12 (𝑦 = (𝑢 ∩ (𝐵𝐾)) → (𝑥𝑦𝑥 ∈ (𝑢 ∩ (𝐵𝐾))))
61 cleq1lem 14891 . . . . . . . . . . . 12 (𝑦 = (𝑢 ∩ (𝐵𝐾)) → ((𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp) ↔ ((𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
6260, 61anbi12d 632 . . . . . . . . . . 11 (𝑦 = (𝑢 ∩ (𝐵𝐾)) → ((𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ (𝑥 ∈ (𝑢 ∩ (𝐵𝐾)) ∧ ((𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))))
6362rspcev 3573 . . . . . . . . . 10 (((𝑢 ∩ (𝐵𝐾)) ∈ (𝑆t (𝐵𝐾)) ∧ (𝑥 ∈ (𝑢 ∩ (𝐵𝐾)) ∧ ((𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))) → ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
6443, 46, 59, 63syl12anc 836 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
6564rexlimdvaa 3135 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) → (∃𝑢𝑆 (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp) → ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))))
6665reximdva 3146 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵𝐾)) → (∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑢𝑆 (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp) → ∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))))
6734, 66mpd 15 . . . . . 6 ((𝜑𝑥 ∈ (𝐵𝐾)) → ∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
68 rexcom 3262 . . . . . . 7 (∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ ∃𝑦 ∈ (𝑆t (𝐵𝐾))∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
69 r19.42v 3165 . . . . . . . 8 (∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ (𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7069rexbii 3080 . . . . . . 7 (∃𝑦 ∈ (𝑆t (𝐵𝐾))∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7168, 70bitri 275 . . . . . 6 (∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7267, 71sylib 218 . . . . 5 ((𝜑𝑥 ∈ (𝐵𝐾)) → ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7372ralrimiva 3125 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐵𝐾)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7415restuni 23078 . . . . 5 ((𝑆 ∈ Top ∧ (𝐵𝐾) ⊆ 𝑆) → (𝐵𝐾) = (𝑆t (𝐵𝐾)))
7536, 25, 74syl2anc 584 . . . 4 (𝜑 → (𝐵𝐾) = (𝑆t (𝐵𝐾)))
7673, 75raleqtrdv 3295 . . 3 (𝜑 → ∀𝑥 (𝑆t (𝐵𝐾))∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
77 eqid 2733 . . . 4 (𝑆t (𝐵𝐾)) = (𝑆t (𝐵𝐾))
78 fveq2 6828 . . . . . 6 (𝑠 = (𝑘𝑦) → ((int‘𝑆)‘𝑠) = ((int‘𝑆)‘(𝑘𝑦)))
7978sseq2d 3963 . . . . 5 (𝑠 = (𝑘𝑦) → (𝑦 ⊆ ((int‘𝑆)‘𝑠) ↔ 𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦))))
80 oveq2 7360 . . . . . 6 (𝑠 = (𝑘𝑦) → (𝑆t 𝑠) = (𝑆t (𝑘𝑦)))
8180eleq1d 2818 . . . . 5 (𝑠 = (𝑘𝑦) → ((𝑆t 𝑠) ∈ Comp ↔ (𝑆t (𝑘𝑦)) ∈ Comp))
8279, 81anbi12d 632 . . . 4 (𝑠 = (𝑘𝑦) → ((𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp) ↔ (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))
8377, 82cmpcovf 23307 . . 3 (((𝑆t (𝐵𝐾)) ∈ Comp ∧ ∀𝑥 (𝑆t (𝐵𝐾))∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))) → ∃𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)( (𝑆t (𝐵𝐾)) = 𝑤 ∧ ∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))))
844, 76, 83syl2anc 584 . 2 (𝜑 → ∃𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)( (𝑆t (𝐵𝐾)) = 𝑤 ∧ ∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))))
8575adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) → (𝐵𝐾) = (𝑆t (𝐵𝐾)))
8685eqeq1d 2735 . . . . . 6 ((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) → ((𝐵𝐾) = 𝑤 (𝑆t (𝐵𝐾)) = 𝑤))
8786biimpar 477 . . . . 5 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ (𝑆t (𝐵𝐾)) = 𝑤) → (𝐵𝐾) = 𝑤)
8836ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑆 ∈ Top)
89 cntop2 23157 . . . . . . . . . . . 12 (𝐴 ∈ (𝑆 Cn 𝑇) → 𝑇 ∈ Top)
907, 89syl 17 . . . . . . . . . . 11 (𝜑𝑇 ∈ Top)
9190ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑇 ∈ Top)
92 xkotop 23504 . . . . . . . . . 10 ((𝑆 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑆) ∈ Top)
9388, 91, 92syl2anc 584 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑇ko 𝑆) ∈ Top)
94 cntop1 23156 . . . . . . . . . . . 12 (𝐵 ∈ (𝑅 Cn 𝑆) → 𝑅 ∈ Top)
951, 94syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Top)
9695ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑅 ∈ Top)
97 xkotop 23504 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ Top)
9896, 88, 97syl2anc 584 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑆ko 𝑅) ∈ Top)
99 simprrl 780 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑘:𝑤⟶𝒫 (𝐴𝑉))
10099frnd 6664 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ran 𝑘 ⊆ 𝒫 (𝐴𝑉))
101 sspwuni 5050 . . . . . . . . . . . 12 (ran 𝑘 ⊆ 𝒫 (𝐴𝑉) ↔ ran 𝑘 ⊆ (𝐴𝑉))
102100, 101sylib 218 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ran 𝑘 ⊆ (𝐴𝑉))
10310ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐴𝑉) ∈ 𝑆)
104103, 50syl 17 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐴𝑉) ⊆ 𝑆)
105102, 104sstrd 3941 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ran 𝑘 𝑆)
106 ffn 6656 . . . . . . . . . . . . 13 (𝑘:𝑤⟶𝒫 (𝐴𝑉) → 𝑘 Fn 𝑤)
107 fniunfv 7187 . . . . . . . . . . . . 13 (𝑘 Fn 𝑤 𝑦𝑤 (𝑘𝑦) = ran 𝑘)
10899, 106, 1073syl 18 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝑘𝑦) = ran 𝑘)
109108oveq2d 7368 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑆t 𝑦𝑤 (𝑘𝑦)) = (𝑆t ran 𝑘))
110 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin))
111110elin2d 4154 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑤 ∈ Fin)
112 simprrr 781 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))
113 simpr 484 . . . . . . . . . . . . . 14 ((𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp) → (𝑆t (𝑘𝑦)) ∈ Comp)
114113ralimi 3070 . . . . . . . . . . . . 13 (∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp) → ∀𝑦𝑤 (𝑆t (𝑘𝑦)) ∈ Comp)
115112, 114syl 17 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 (𝑆t (𝑘𝑦)) ∈ Comp)
11615fiuncmp 23320 . . . . . . . . . . . 12 ((𝑆 ∈ Top ∧ 𝑤 ∈ Fin ∧ ∀𝑦𝑤 (𝑆t (𝑘𝑦)) ∈ Comp) → (𝑆t 𝑦𝑤 (𝑘𝑦)) ∈ Comp)
11788, 111, 115, 116syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑆t 𝑦𝑤 (𝑘𝑦)) ∈ Comp)
118109, 117eqeltrrd 2834 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑆t ran 𝑘) ∈ Comp)
1198ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑉𝑇)
12015, 88, 91, 105, 118, 119xkoopn 23505 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ∈ (𝑇ko 𝑆))
121 xkococn.k . . . . . . . . . . 11 (𝜑𝐾 𝑅)
122121ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐾 𝑅)
1232ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑅t 𝐾) ∈ Comp)
124108, 105eqsstrd 3965 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝑘𝑦) ⊆ 𝑆)
125 iunss 4995 . . . . . . . . . . . . 13 ( 𝑦𝑤 (𝑘𝑦) ⊆ 𝑆 ↔ ∀𝑦𝑤 (𝑘𝑦) ⊆ 𝑆)
126124, 125sylib 218 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 (𝑘𝑦) ⊆ 𝑆)
12715ntropn 22965 . . . . . . . . . . . . . 14 ((𝑆 ∈ Top ∧ (𝑘𝑦) ⊆ 𝑆) → ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆)
128127ex 412 . . . . . . . . . . . . 13 (𝑆 ∈ Top → ((𝑘𝑦) ⊆ 𝑆 → ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆))
129128ralimdv 3147 . . . . . . . . . . . 12 (𝑆 ∈ Top → (∀𝑦𝑤 (𝑘𝑦) ⊆ 𝑆 → ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆))
13088, 126, 129sylc 65 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆)
131 iunopn 22814 . . . . . . . . . . 11 ((𝑆 ∈ Top ∧ ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆)
13288, 130, 131syl2anc 584 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆)
13321, 96, 88, 122, 123, 132xkoopn 23505 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ∈ (𝑆ko 𝑅))
134 txopn 23518 . . . . . . . . 9 ((((𝑇ko 𝑆) ∈ Top ∧ (𝑆ko 𝑅) ∈ Top) ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ∈ (𝑇ko 𝑆) ∧ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ∈ (𝑆ko 𝑅))) → ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)))
13593, 98, 120, 133, 134syl22anc 838 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)))
136 imaeq1 6008 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 ran 𝑘) = (𝐴 ran 𝑘))
137136sseq1d 3962 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑎 ran 𝑘) ⊆ 𝑉 ↔ (𝐴 ran 𝑘) ⊆ 𝑉))
1387ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐴 ∈ (𝑆 Cn 𝑇))
139 imaiun 7185 . . . . . . . . . . . 12 (𝐴 𝑦𝑤 (𝑘𝑦)) = 𝑦𝑤 (𝐴 “ (𝑘𝑦))
140108imaeq2d 6013 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐴 𝑦𝑤 (𝑘𝑦)) = (𝐴 ran 𝑘))
141139, 140eqtr3id 2782 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝐴 “ (𝑘𝑦)) = (𝐴 ran 𝑘))
142108, 102eqsstrd 3965 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉))
14319ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → Fun 𝐴)
14499, 106syl 17 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑘 Fn 𝑤)
14527ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → dom 𝐴 = 𝑆)
146105, 145sseqtrrd 3968 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ran 𝑘 ⊆ dom 𝐴)
147 simpl1 1192 . . . . . . . . . . . . . . . 16 (((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) ∧ 𝑦𝑤) → Fun 𝐴)
1481073ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → 𝑦𝑤 (𝑘𝑦) = ran 𝑘)
149 simp3 1138 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → ran 𝑘 ⊆ dom 𝐴)
150148, 149eqsstrd 3965 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → 𝑦𝑤 (𝑘𝑦) ⊆ dom 𝐴)
151 iunss 4995 . . . . . . . . . . . . . . . . . 18 ( 𝑦𝑤 (𝑘𝑦) ⊆ dom 𝐴 ↔ ∀𝑦𝑤 (𝑘𝑦) ⊆ dom 𝐴)
152150, 151sylib 218 . . . . . . . . . . . . . . . . 17 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → ∀𝑦𝑤 (𝑘𝑦) ⊆ dom 𝐴)
153152r19.21bi 3225 . . . . . . . . . . . . . . . 16 (((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) ∧ 𝑦𝑤) → (𝑘𝑦) ⊆ dom 𝐴)
154 funimass3 6993 . . . . . . . . . . . . . . . 16 ((Fun 𝐴 ∧ (𝑘𝑦) ⊆ dom 𝐴) → ((𝐴 “ (𝑘𝑦)) ⊆ 𝑉 ↔ (𝑘𝑦) ⊆ (𝐴𝑉)))
155147, 153, 154syl2anc 584 . . . . . . . . . . . . . . 15 (((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) ∧ 𝑦𝑤) → ((𝐴 “ (𝑘𝑦)) ⊆ 𝑉 ↔ (𝑘𝑦) ⊆ (𝐴𝑉)))
156155ralbidva 3154 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → (∀𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉 ↔ ∀𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉)))
157 iunss 4995 . . . . . . . . . . . . . 14 ( 𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉 ↔ ∀𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉)
158 iunss 4995 . . . . . . . . . . . . . 14 ( 𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉) ↔ ∀𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉))
159156, 157, 1583bitr4g 314 . . . . . . . . . . . . 13 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → ( 𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉 𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉)))
160143, 144, 146, 159syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ( 𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉 𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉)))
161142, 160mpbird 257 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉)
162141, 161eqsstrrd 3966 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐴 ran 𝑘) ⊆ 𝑉)
163137, 138, 162elrabd 3645 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐴 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉})
164 imaeq1 6008 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏𝐾) = (𝐵𝐾))
165164sseq1d 3962 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ↔ (𝐵𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))
1661ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐵 ∈ (𝑅 Cn 𝑆))
167 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐵𝐾) = 𝑤)
168 uniiun 5009 . . . . . . . . . . . 12 𝑤 = 𝑦𝑤 𝑦
169167, 168eqtrdi 2784 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐵𝐾) = 𝑦𝑤 𝑦)
170 simpl 482 . . . . . . . . . . . . 13 ((𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp) → 𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)))
171170ralimi 3070 . . . . . . . . . . . 12 (∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp) → ∀𝑦𝑤 𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)))
172 ss2iun 4960 . . . . . . . . . . . 12 (∀𝑦𝑤 𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) → 𝑦𝑤 𝑦 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))
173112, 171, 1723syl 18 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 𝑦 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))
174169, 173eqsstrd 3965 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐵𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))
175165, 166, 174elrabd 3645 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐵 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})
176163, 175opelxpd 5658 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ⟨𝐴, 𝐵⟩ ∈ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}))
177 imaeq1 6008 . . . . . . . . . . . . . . 15 (𝑎 = 𝑢 → (𝑎 ran 𝑘) = (𝑢 ran 𝑘))
178177sseq1d 3962 . . . . . . . . . . . . . 14 (𝑎 = 𝑢 → ((𝑎 ran 𝑘) ⊆ 𝑉 ↔ (𝑢 ran 𝑘) ⊆ 𝑉))
179178elrab 3643 . . . . . . . . . . . . 13 (𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ↔ (𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉))
180 imaeq1 6008 . . . . . . . . . . . . . . 15 (𝑏 = 𝑣 → (𝑏𝐾) = (𝑣𝐾))
181180sseq1d 3962 . . . . . . . . . . . . . 14 (𝑏 = 𝑣 → ((𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ↔ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))
182181elrab 3643 . . . . . . . . . . . . 13 (𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ↔ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))
183179, 182anbi12i 628 . . . . . . . . . . . 12 ((𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ∧ 𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ↔ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))))
184 simprll 778 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → 𝑢 ∈ (𝑆 Cn 𝑇))
185 simprrl 780 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → 𝑣 ∈ (𝑅 Cn 𝑆))
186 coeq1 5801 . . . . . . . . . . . . . . 15 (𝑓 = 𝑢 → (𝑓𝑔) = (𝑢𝑔))
187 coeq2 5802 . . . . . . . . . . . . . . 15 (𝑔 = 𝑣 → (𝑢𝑔) = (𝑢𝑣))
188 xkococn.1 . . . . . . . . . . . . . . 15 𝐹 = (𝑓 ∈ (𝑆 Cn 𝑇), 𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝑔))
189 vex 3441 . . . . . . . . . . . . . . . 16 𝑢 ∈ V
190 vex 3441 . . . . . . . . . . . . . . . 16 𝑣 ∈ V
191189, 190coex 7866 . . . . . . . . . . . . . . 15 (𝑢𝑣) ∈ V
192186, 187, 188, 191ovmpo 7512 . . . . . . . . . . . . . 14 ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ 𝑣 ∈ (𝑅 Cn 𝑆)) → (𝑢𝐹𝑣) = (𝑢𝑣))
193184, 185, 192syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢𝐹𝑣) = (𝑢𝑣))
194 imaeq1 6008 . . . . . . . . . . . . . . 15 ( = (𝑢𝑣) → (𝐾) = ((𝑢𝑣) “ 𝐾))
195194sseq1d 3962 . . . . . . . . . . . . . 14 ( = (𝑢𝑣) → ((𝐾) ⊆ 𝑉 ↔ ((𝑢𝑣) “ 𝐾) ⊆ 𝑉))
196 cnco 23182 . . . . . . . . . . . . . . 15 ((𝑣 ∈ (𝑅 Cn 𝑆) ∧ 𝑢 ∈ (𝑆 Cn 𝑇)) → (𝑢𝑣) ∈ (𝑅 Cn 𝑇))
197185, 184, 196syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢𝑣) ∈ (𝑅 Cn 𝑇))
198 imaco 6203 . . . . . . . . . . . . . . 15 ((𝑢𝑣) “ 𝐾) = (𝑢 “ (𝑣𝐾))
199 simprrr 781 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))
20015ntrss2 22973 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ Top ∧ (𝑘𝑦) ⊆ 𝑆) → ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦))
201200ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 ∈ Top → ((𝑘𝑦) ⊆ 𝑆 → ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦)))
202201ralimdv 3147 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ Top → (∀𝑦𝑤 (𝑘𝑦) ⊆ 𝑆 → ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦)))
20388, 126, 202sylc 65 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦))
204 ss2iun 4960 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ 𝑦𝑤 (𝑘𝑦))
205203, 204syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ 𝑦𝑤 (𝑘𝑦))
206205, 108sseqtrd 3967 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ ran 𝑘)
207206adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ ran 𝑘)
208199, 207sstrd 3941 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑣𝐾) ⊆ ran 𝑘)
209 imass2 6055 . . . . . . . . . . . . . . . . 17 ((𝑣𝐾) ⊆ ran 𝑘 → (𝑢 “ (𝑣𝐾)) ⊆ (𝑢 ran 𝑘))
210208, 209syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢 “ (𝑣𝐾)) ⊆ (𝑢 ran 𝑘))
211 simprlr 779 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢 ran 𝑘) ⊆ 𝑉)
212210, 211sstrd 3941 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢 “ (𝑣𝐾)) ⊆ 𝑉)
213198, 212eqsstrid 3969 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → ((𝑢𝑣) “ 𝐾) ⊆ 𝑉)
214195, 197, 213elrabd 3645 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
215193, 214eqeltrd 2833 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
216183, 215sylan2b 594 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ (𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ∧ 𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) → (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
217216ralrimivva 3176 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉}∀𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
218188mpofun 7476 . . . . . . . . . . 11 Fun 𝐹
219 ssrab2 4029 . . . . . . . . . . . . 13 {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ⊆ (𝑆 Cn 𝑇)
220 ssrab2 4029 . . . . . . . . . . . . 13 {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ⊆ (𝑅 Cn 𝑆)
221 xpss12 5634 . . . . . . . . . . . . 13 (({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ⊆ (𝑆 Cn 𝑇) ∧ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ⊆ (𝑅 Cn 𝑆)) → ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆)))
222219, 220, 221mp2an 692 . . . . . . . . . . . 12 ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))
223 vex 3441 . . . . . . . . . . . . . 14 𝑓 ∈ V
224 vex 3441 . . . . . . . . . . . . . 14 𝑔 ∈ V
225223, 224coex 7866 . . . . . . . . . . . . 13 (𝑓𝑔) ∈ V
226188, 225dmmpo 8009 . . . . . . . . . . . 12 dom 𝐹 = ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))
227222, 226sseqtrri 3980 . . . . . . . . . . 11 ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ dom 𝐹
228 funimassov 7529 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ dom 𝐹) → ((𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉} ↔ ∀𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉}∀𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))
229218, 227, 228mp2an 692 . . . . . . . . . 10 ((𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉} ↔ ∀𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉}∀𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
230217, 229sylibr 234 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
231 funimass3 6993 . . . . . . . . . 10 ((Fun 𝐹 ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ dom 𝐹) → ((𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉} ↔ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
232218, 227, 231mp2an 692 . . . . . . . . 9 ((𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉} ↔ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))
233230, 232sylib 218 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))
234 eleq2 2822 . . . . . . . . . 10 (𝑧 = ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) → (⟨𝐴, 𝐵⟩ ∈ 𝑧 ↔ ⟨𝐴, 𝐵⟩ ∈ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})))
235 sseq1 3956 . . . . . . . . . 10 (𝑧 = ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) → (𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}) ↔ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
236234, 235anbi12d 632 . . . . . . . . 9 (𝑧 = ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) → ((⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})) ↔ (⟨𝐴, 𝐵⟩ ∈ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
237236rspcev 3573 . . . . . . . 8 ((({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)) ∧ (⟨𝐴, 𝐵⟩ ∈ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
238135, 176, 233, 237syl12anc 836 . . . . . . 7 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
239238expr 456 . . . . . 6 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ (𝐵𝐾) = 𝑤) → ((𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
240239exlimdv 1934 . . . . 5 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ (𝐵𝐾) = 𝑤) → (∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
24187, 240syldan 591 . . . 4 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ (𝑆t (𝐵𝐾)) = 𝑤) → (∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
242241expimpd 453 . . 3 ((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) → (( (𝑆t (𝐵𝐾)) = 𝑤 ∧ ∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
243242rexlimdva 3134 . 2 (𝜑 → (∃𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)( (𝑆t (𝐵𝐾)) = 𝑤 ∧ ∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
24484, 243mpd 15 1 (𝜑 → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  cin 3897  wss 3898  𝒫 cpw 4549  cop 4581   cuni 4858   ciun 4941   × cxp 5617  ccnv 5618  dom cdm 5619  ran crn 5620  cima 5622  ccom 5623  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  cmpo 7354  Fincfn 8875  t crest 17326  Topctop 22809  intcnt 22933   Cn ccn 23140  Compccmp 23302  𝑛-Locally cnlly 23381   ×t ctx 23476  ko cxko 23477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-1o 8391  df-map 8758  df-en 8876  df-dom 8877  df-fin 8879  df-fi 9302  df-rest 17328  df-topgen 17349  df-top 22810  df-topon 22827  df-bases 22862  df-ntr 22936  df-nei 23014  df-cn 23143  df-cmp 23303  df-nlly 23383  df-tx 23478  df-xko 23479
This theorem is referenced by:  xkococn  23576
  Copyright terms: Public domain W3C validator