MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkococnlem Structured version   Visualization version   GIF version

Theorem xkococnlem 23572
Description: Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
xkococn.1 𝐹 = (𝑓 ∈ (𝑆 Cn 𝑇), 𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝑔))
xkococn.s (𝜑𝑆 ∈ 𝑛-Locally Comp)
xkococn.k (𝜑𝐾 𝑅)
xkococn.c (𝜑 → (𝑅t 𝐾) ∈ Comp)
xkococn.v (𝜑𝑉𝑇)
xkococn.a (𝜑𝐴 ∈ (𝑆 Cn 𝑇))
xkococn.b (𝜑𝐵 ∈ (𝑅 Cn 𝑆))
xkococn.i (𝜑 → ((𝐴𝐵) “ 𝐾) ⊆ 𝑉)
Assertion
Ref Expression
xkococnlem (𝜑 → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑓,𝑔,,𝑧,𝑅   𝑆,𝑓,𝑔,𝑧   ,𝐾,𝑧   𝑇,𝑓,𝑔,,𝑧   𝑧,𝐹   ,𝑉,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑓,𝑔,)   𝐴(𝑓,𝑔,)   𝐵(𝑓,𝑔,)   𝑆()   𝐹(𝑓,𝑔,)   𝐾(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem xkococnlem
Dummy variables 𝑘 𝑎 𝑠 𝑢 𝑣 𝑤 𝑥 𝑦 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xkococn.b . . . 4 (𝜑𝐵 ∈ (𝑅 Cn 𝑆))
2 xkococn.c . . . 4 (𝜑 → (𝑅t 𝐾) ∈ Comp)
3 imacmp 23310 . . . 4 ((𝐵 ∈ (𝑅 Cn 𝑆) ∧ (𝑅t 𝐾) ∈ Comp) → (𝑆t (𝐵𝐾)) ∈ Comp)
41, 2, 3syl2anc 584 . . 3 (𝜑 → (𝑆t (𝐵𝐾)) ∈ Comp)
5 xkococn.s . . . . . . . . 9 (𝜑𝑆 ∈ 𝑛-Locally Comp)
65adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵𝐾)) → 𝑆 ∈ 𝑛-Locally Comp)
7 xkococn.a . . . . . . . . . 10 (𝜑𝐴 ∈ (𝑆 Cn 𝑇))
8 xkococn.v . . . . . . . . . 10 (𝜑𝑉𝑇)
9 cnima 23178 . . . . . . . . . 10 ((𝐴 ∈ (𝑆 Cn 𝑇) ∧ 𝑉𝑇) → (𝐴𝑉) ∈ 𝑆)
107, 8, 9syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴𝑉) ∈ 𝑆)
1110adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵𝐾)) → (𝐴𝑉) ∈ 𝑆)
12 imaco 6198 . . . . . . . . . . 11 ((𝐴𝐵) “ 𝐾) = (𝐴 “ (𝐵𝐾))
13 xkococn.i . . . . . . . . . . 11 (𝜑 → ((𝐴𝐵) “ 𝐾) ⊆ 𝑉)
1412, 13eqsstrrid 3974 . . . . . . . . . 10 (𝜑 → (𝐴 “ (𝐵𝐾)) ⊆ 𝑉)
15 eqid 2731 . . . . . . . . . . . . 13 𝑆 = 𝑆
16 eqid 2731 . . . . . . . . . . . . 13 𝑇 = 𝑇
1715, 16cnf 23159 . . . . . . . . . . . 12 (𝐴 ∈ (𝑆 Cn 𝑇) → 𝐴: 𝑆 𝑇)
18 ffun 6654 . . . . . . . . . . . 12 (𝐴: 𝑆 𝑇 → Fun 𝐴)
197, 17, 183syl 18 . . . . . . . . . . 11 (𝜑 → Fun 𝐴)
20 imassrn 6020 . . . . . . . . . . . . 13 (𝐵𝐾) ⊆ ran 𝐵
21 eqid 2731 . . . . . . . . . . . . . . 15 𝑅 = 𝑅
2221, 15cnf 23159 . . . . . . . . . . . . . 14 (𝐵 ∈ (𝑅 Cn 𝑆) → 𝐵: 𝑅 𝑆)
23 frn 6658 . . . . . . . . . . . . . 14 (𝐵: 𝑅 𝑆 → ran 𝐵 𝑆)
241, 22, 233syl 18 . . . . . . . . . . . . 13 (𝜑 → ran 𝐵 𝑆)
2520, 24sstrid 3946 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐾) ⊆ 𝑆)
26 fdm 6660 . . . . . . . . . . . . 13 (𝐴: 𝑆 𝑇 → dom 𝐴 = 𝑆)
277, 17, 263syl 18 . . . . . . . . . . . 12 (𝜑 → dom 𝐴 = 𝑆)
2825, 27sseqtrrd 3972 . . . . . . . . . . 11 (𝜑 → (𝐵𝐾) ⊆ dom 𝐴)
29 funimass3 6987 . . . . . . . . . . 11 ((Fun 𝐴 ∧ (𝐵𝐾) ⊆ dom 𝐴) → ((𝐴 “ (𝐵𝐾)) ⊆ 𝑉 ↔ (𝐵𝐾) ⊆ (𝐴𝑉)))
3019, 28, 29syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐴 “ (𝐵𝐾)) ⊆ 𝑉 ↔ (𝐵𝐾) ⊆ (𝐴𝑉)))
3114, 30mpbid 232 . . . . . . . . 9 (𝜑 → (𝐵𝐾) ⊆ (𝐴𝑉))
3231sselda 3934 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵𝐾)) → 𝑥 ∈ (𝐴𝑉))
33 nlly2i 23389 . . . . . . . 8 ((𝑆 ∈ 𝑛-Locally Comp ∧ (𝐴𝑉) ∈ 𝑆𝑥 ∈ (𝐴𝑉)) → ∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑢𝑆 (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))
346, 11, 32, 33syl3anc 1373 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵𝐾)) → ∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑢𝑆 (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))
35 nllytop 23386 . . . . . . . . . . . . 13 (𝑆 ∈ 𝑛-Locally Comp → 𝑆 ∈ Top)
365, 35syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Top)
3736ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑆 ∈ Top)
38 imaexg 7843 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑅 Cn 𝑆) → (𝐵𝐾) ∈ V)
391, 38syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐾) ∈ V)
4039ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝐵𝐾) ∈ V)
41 simprl 770 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑢𝑆)
42 elrestr 17329 . . . . . . . . . . 11 ((𝑆 ∈ Top ∧ (𝐵𝐾) ∈ V ∧ 𝑢𝑆) → (𝑢 ∩ (𝐵𝐾)) ∈ (𝑆t (𝐵𝐾)))
4337, 40, 41, 42syl3anc 1373 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝑢 ∩ (𝐵𝐾)) ∈ (𝑆t (𝐵𝐾)))
44 simprr1 1222 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑥𝑢)
45 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑥 ∈ (𝐵𝐾))
4644, 45elind 4150 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑥 ∈ (𝑢 ∩ (𝐵𝐾)))
47 inss1 4187 . . . . . . . . . . . 12 (𝑢 ∩ (𝐵𝐾)) ⊆ 𝑢
48 elpwi 4557 . . . . . . . . . . . . . . 15 (𝑠 ∈ 𝒫 (𝐴𝑉) → 𝑠 ⊆ (𝐴𝑉))
4948ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑠 ⊆ (𝐴𝑉))
50 elssuni 4889 . . . . . . . . . . . . . . . 16 ((𝐴𝑉) ∈ 𝑆 → (𝐴𝑉) ⊆ 𝑆)
5110, 50syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝑉) ⊆ 𝑆)
5251ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝐴𝑉) ⊆ 𝑆)
5349, 52sstrd 3945 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑠 𝑆)
54 simprr2 1223 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑢𝑠)
5515ssntr 22971 . . . . . . . . . . . . 13 (((𝑆 ∈ Top ∧ 𝑠 𝑆) ∧ (𝑢𝑆𝑢𝑠)) → 𝑢 ⊆ ((int‘𝑆)‘𝑠))
5637, 53, 41, 54, 55syl22anc 838 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑢 ⊆ ((int‘𝑆)‘𝑠))
5747, 56sstrid 3946 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠))
58 simprr3 1224 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝑆t 𝑠) ∈ Comp)
5957, 58jca 511 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → ((𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))
60 eleq2 2820 . . . . . . . . . . . 12 (𝑦 = (𝑢 ∩ (𝐵𝐾)) → (𝑥𝑦𝑥 ∈ (𝑢 ∩ (𝐵𝐾))))
61 cleq1lem 14886 . . . . . . . . . . . 12 (𝑦 = (𝑢 ∩ (𝐵𝐾)) → ((𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp) ↔ ((𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
6260, 61anbi12d 632 . . . . . . . . . . 11 (𝑦 = (𝑢 ∩ (𝐵𝐾)) → ((𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ (𝑥 ∈ (𝑢 ∩ (𝐵𝐾)) ∧ ((𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))))
6362rspcev 3577 . . . . . . . . . 10 (((𝑢 ∩ (𝐵𝐾)) ∈ (𝑆t (𝐵𝐾)) ∧ (𝑥 ∈ (𝑢 ∩ (𝐵𝐾)) ∧ ((𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))) → ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
6443, 46, 59, 63syl12anc 836 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
6564rexlimdvaa 3134 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) → (∃𝑢𝑆 (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp) → ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))))
6665reximdva 3145 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵𝐾)) → (∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑢𝑆 (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp) → ∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))))
6734, 66mpd 15 . . . . . 6 ((𝜑𝑥 ∈ (𝐵𝐾)) → ∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
68 rexcom 3261 . . . . . . 7 (∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ ∃𝑦 ∈ (𝑆t (𝐵𝐾))∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
69 r19.42v 3164 . . . . . . . 8 (∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ (𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7069rexbii 3079 . . . . . . 7 (∃𝑦 ∈ (𝑆t (𝐵𝐾))∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7168, 70bitri 275 . . . . . 6 (∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7267, 71sylib 218 . . . . 5 ((𝜑𝑥 ∈ (𝐵𝐾)) → ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7372ralrimiva 3124 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐵𝐾)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7415restuni 23075 . . . . 5 ((𝑆 ∈ Top ∧ (𝐵𝐾) ⊆ 𝑆) → (𝐵𝐾) = (𝑆t (𝐵𝐾)))
7536, 25, 74syl2anc 584 . . . 4 (𝜑 → (𝐵𝐾) = (𝑆t (𝐵𝐾)))
7673, 75raleqtrdv 3294 . . 3 (𝜑 → ∀𝑥 (𝑆t (𝐵𝐾))∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
77 eqid 2731 . . . 4 (𝑆t (𝐵𝐾)) = (𝑆t (𝐵𝐾))
78 fveq2 6822 . . . . . 6 (𝑠 = (𝑘𝑦) → ((int‘𝑆)‘𝑠) = ((int‘𝑆)‘(𝑘𝑦)))
7978sseq2d 3967 . . . . 5 (𝑠 = (𝑘𝑦) → (𝑦 ⊆ ((int‘𝑆)‘𝑠) ↔ 𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦))))
80 oveq2 7354 . . . . . 6 (𝑠 = (𝑘𝑦) → (𝑆t 𝑠) = (𝑆t (𝑘𝑦)))
8180eleq1d 2816 . . . . 5 (𝑠 = (𝑘𝑦) → ((𝑆t 𝑠) ∈ Comp ↔ (𝑆t (𝑘𝑦)) ∈ Comp))
8279, 81anbi12d 632 . . . 4 (𝑠 = (𝑘𝑦) → ((𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp) ↔ (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))
8377, 82cmpcovf 23304 . . 3 (((𝑆t (𝐵𝐾)) ∈ Comp ∧ ∀𝑥 (𝑆t (𝐵𝐾))∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))) → ∃𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)( (𝑆t (𝐵𝐾)) = 𝑤 ∧ ∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))))
844, 76, 83syl2anc 584 . 2 (𝜑 → ∃𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)( (𝑆t (𝐵𝐾)) = 𝑤 ∧ ∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))))
8575adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) → (𝐵𝐾) = (𝑆t (𝐵𝐾)))
8685eqeq1d 2733 . . . . . 6 ((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) → ((𝐵𝐾) = 𝑤 (𝑆t (𝐵𝐾)) = 𝑤))
8786biimpar 477 . . . . 5 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ (𝑆t (𝐵𝐾)) = 𝑤) → (𝐵𝐾) = 𝑤)
8836ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑆 ∈ Top)
89 cntop2 23154 . . . . . . . . . . . 12 (𝐴 ∈ (𝑆 Cn 𝑇) → 𝑇 ∈ Top)
907, 89syl 17 . . . . . . . . . . 11 (𝜑𝑇 ∈ Top)
9190ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑇 ∈ Top)
92 xkotop 23501 . . . . . . . . . 10 ((𝑆 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑆) ∈ Top)
9388, 91, 92syl2anc 584 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑇ko 𝑆) ∈ Top)
94 cntop1 23153 . . . . . . . . . . . 12 (𝐵 ∈ (𝑅 Cn 𝑆) → 𝑅 ∈ Top)
951, 94syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Top)
9695ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑅 ∈ Top)
97 xkotop 23501 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ Top)
9896, 88, 97syl2anc 584 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑆ko 𝑅) ∈ Top)
99 simprrl 780 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑘:𝑤⟶𝒫 (𝐴𝑉))
10099frnd 6659 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ran 𝑘 ⊆ 𝒫 (𝐴𝑉))
101 sspwuni 5048 . . . . . . . . . . . 12 (ran 𝑘 ⊆ 𝒫 (𝐴𝑉) ↔ ran 𝑘 ⊆ (𝐴𝑉))
102100, 101sylib 218 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ran 𝑘 ⊆ (𝐴𝑉))
10310ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐴𝑉) ∈ 𝑆)
104103, 50syl 17 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐴𝑉) ⊆ 𝑆)
105102, 104sstrd 3945 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ran 𝑘 𝑆)
106 ffn 6651 . . . . . . . . . . . . 13 (𝑘:𝑤⟶𝒫 (𝐴𝑉) → 𝑘 Fn 𝑤)
107 fniunfv 7181 . . . . . . . . . . . . 13 (𝑘 Fn 𝑤 𝑦𝑤 (𝑘𝑦) = ran 𝑘)
10899, 106, 1073syl 18 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝑘𝑦) = ran 𝑘)
109108oveq2d 7362 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑆t 𝑦𝑤 (𝑘𝑦)) = (𝑆t ran 𝑘))
110 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin))
111110elin2d 4155 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑤 ∈ Fin)
112 simprrr 781 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))
113 simpr 484 . . . . . . . . . . . . . 14 ((𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp) → (𝑆t (𝑘𝑦)) ∈ Comp)
114113ralimi 3069 . . . . . . . . . . . . 13 (∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp) → ∀𝑦𝑤 (𝑆t (𝑘𝑦)) ∈ Comp)
115112, 114syl 17 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 (𝑆t (𝑘𝑦)) ∈ Comp)
11615fiuncmp 23317 . . . . . . . . . . . 12 ((𝑆 ∈ Top ∧ 𝑤 ∈ Fin ∧ ∀𝑦𝑤 (𝑆t (𝑘𝑦)) ∈ Comp) → (𝑆t 𝑦𝑤 (𝑘𝑦)) ∈ Comp)
11788, 111, 115, 116syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑆t 𝑦𝑤 (𝑘𝑦)) ∈ Comp)
118109, 117eqeltrrd 2832 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑆t ran 𝑘) ∈ Comp)
1198ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑉𝑇)
12015, 88, 91, 105, 118, 119xkoopn 23502 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ∈ (𝑇ko 𝑆))
121 xkococn.k . . . . . . . . . . 11 (𝜑𝐾 𝑅)
122121ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐾 𝑅)
1232ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑅t 𝐾) ∈ Comp)
124108, 105eqsstrd 3969 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝑘𝑦) ⊆ 𝑆)
125 iunss 4994 . . . . . . . . . . . . 13 ( 𝑦𝑤 (𝑘𝑦) ⊆ 𝑆 ↔ ∀𝑦𝑤 (𝑘𝑦) ⊆ 𝑆)
126124, 125sylib 218 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 (𝑘𝑦) ⊆ 𝑆)
12715ntropn 22962 . . . . . . . . . . . . . 14 ((𝑆 ∈ Top ∧ (𝑘𝑦) ⊆ 𝑆) → ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆)
128127ex 412 . . . . . . . . . . . . 13 (𝑆 ∈ Top → ((𝑘𝑦) ⊆ 𝑆 → ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆))
129128ralimdv 3146 . . . . . . . . . . . 12 (𝑆 ∈ Top → (∀𝑦𝑤 (𝑘𝑦) ⊆ 𝑆 → ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆))
13088, 126, 129sylc 65 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆)
131 iunopn 22811 . . . . . . . . . . 11 ((𝑆 ∈ Top ∧ ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆)
13288, 130, 131syl2anc 584 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆)
13321, 96, 88, 122, 123, 132xkoopn 23502 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ∈ (𝑆ko 𝑅))
134 txopn 23515 . . . . . . . . 9 ((((𝑇ko 𝑆) ∈ Top ∧ (𝑆ko 𝑅) ∈ Top) ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ∈ (𝑇ko 𝑆) ∧ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ∈ (𝑆ko 𝑅))) → ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)))
13593, 98, 120, 133, 134syl22anc 838 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)))
136 imaeq1 6004 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 ran 𝑘) = (𝐴 ran 𝑘))
137136sseq1d 3966 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑎 ran 𝑘) ⊆ 𝑉 ↔ (𝐴 ran 𝑘) ⊆ 𝑉))
1387ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐴 ∈ (𝑆 Cn 𝑇))
139 imaiun 7179 . . . . . . . . . . . 12 (𝐴 𝑦𝑤 (𝑘𝑦)) = 𝑦𝑤 (𝐴 “ (𝑘𝑦))
140108imaeq2d 6009 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐴 𝑦𝑤 (𝑘𝑦)) = (𝐴 ran 𝑘))
141139, 140eqtr3id 2780 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝐴 “ (𝑘𝑦)) = (𝐴 ran 𝑘))
142108, 102eqsstrd 3969 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉))
14319ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → Fun 𝐴)
14499, 106syl 17 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑘 Fn 𝑤)
14527ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → dom 𝐴 = 𝑆)
146105, 145sseqtrrd 3972 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ran 𝑘 ⊆ dom 𝐴)
147 simpl1 1192 . . . . . . . . . . . . . . . 16 (((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) ∧ 𝑦𝑤) → Fun 𝐴)
1481073ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → 𝑦𝑤 (𝑘𝑦) = ran 𝑘)
149 simp3 1138 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → ran 𝑘 ⊆ dom 𝐴)
150148, 149eqsstrd 3969 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → 𝑦𝑤 (𝑘𝑦) ⊆ dom 𝐴)
151 iunss 4994 . . . . . . . . . . . . . . . . . 18 ( 𝑦𝑤 (𝑘𝑦) ⊆ dom 𝐴 ↔ ∀𝑦𝑤 (𝑘𝑦) ⊆ dom 𝐴)
152150, 151sylib 218 . . . . . . . . . . . . . . . . 17 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → ∀𝑦𝑤 (𝑘𝑦) ⊆ dom 𝐴)
153152r19.21bi 3224 . . . . . . . . . . . . . . . 16 (((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) ∧ 𝑦𝑤) → (𝑘𝑦) ⊆ dom 𝐴)
154 funimass3 6987 . . . . . . . . . . . . . . . 16 ((Fun 𝐴 ∧ (𝑘𝑦) ⊆ dom 𝐴) → ((𝐴 “ (𝑘𝑦)) ⊆ 𝑉 ↔ (𝑘𝑦) ⊆ (𝐴𝑉)))
155147, 153, 154syl2anc 584 . . . . . . . . . . . . . . 15 (((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) ∧ 𝑦𝑤) → ((𝐴 “ (𝑘𝑦)) ⊆ 𝑉 ↔ (𝑘𝑦) ⊆ (𝐴𝑉)))
156155ralbidva 3153 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → (∀𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉 ↔ ∀𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉)))
157 iunss 4994 . . . . . . . . . . . . . 14 ( 𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉 ↔ ∀𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉)
158 iunss 4994 . . . . . . . . . . . . . 14 ( 𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉) ↔ ∀𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉))
159156, 157, 1583bitr4g 314 . . . . . . . . . . . . 13 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → ( 𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉 𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉)))
160143, 144, 146, 159syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ( 𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉 𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉)))
161142, 160mpbird 257 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉)
162141, 161eqsstrrd 3970 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐴 ran 𝑘) ⊆ 𝑉)
163137, 138, 162elrabd 3649 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐴 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉})
164 imaeq1 6004 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏𝐾) = (𝐵𝐾))
165164sseq1d 3966 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ↔ (𝐵𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))
1661ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐵 ∈ (𝑅 Cn 𝑆))
167 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐵𝐾) = 𝑤)
168 uniiun 5007 . . . . . . . . . . . 12 𝑤 = 𝑦𝑤 𝑦
169167, 168eqtrdi 2782 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐵𝐾) = 𝑦𝑤 𝑦)
170 simpl 482 . . . . . . . . . . . . 13 ((𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp) → 𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)))
171170ralimi 3069 . . . . . . . . . . . 12 (∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp) → ∀𝑦𝑤 𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)))
172 ss2iun 4960 . . . . . . . . . . . 12 (∀𝑦𝑤 𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) → 𝑦𝑤 𝑦 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))
173112, 171, 1723syl 18 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 𝑦 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))
174169, 173eqsstrd 3969 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐵𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))
175165, 166, 174elrabd 3649 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐵 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})
176163, 175opelxpd 5655 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ⟨𝐴, 𝐵⟩ ∈ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}))
177 imaeq1 6004 . . . . . . . . . . . . . . 15 (𝑎 = 𝑢 → (𝑎 ran 𝑘) = (𝑢 ran 𝑘))
178177sseq1d 3966 . . . . . . . . . . . . . 14 (𝑎 = 𝑢 → ((𝑎 ran 𝑘) ⊆ 𝑉 ↔ (𝑢 ran 𝑘) ⊆ 𝑉))
179178elrab 3647 . . . . . . . . . . . . 13 (𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ↔ (𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉))
180 imaeq1 6004 . . . . . . . . . . . . . . 15 (𝑏 = 𝑣 → (𝑏𝐾) = (𝑣𝐾))
181180sseq1d 3966 . . . . . . . . . . . . . 14 (𝑏 = 𝑣 → ((𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ↔ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))
182181elrab 3647 . . . . . . . . . . . . 13 (𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ↔ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))
183179, 182anbi12i 628 . . . . . . . . . . . 12 ((𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ∧ 𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ↔ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))))
184 simprll 778 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → 𝑢 ∈ (𝑆 Cn 𝑇))
185 simprrl 780 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → 𝑣 ∈ (𝑅 Cn 𝑆))
186 coeq1 5797 . . . . . . . . . . . . . . 15 (𝑓 = 𝑢 → (𝑓𝑔) = (𝑢𝑔))
187 coeq2 5798 . . . . . . . . . . . . . . 15 (𝑔 = 𝑣 → (𝑢𝑔) = (𝑢𝑣))
188 xkococn.1 . . . . . . . . . . . . . . 15 𝐹 = (𝑓 ∈ (𝑆 Cn 𝑇), 𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝑔))
189 vex 3440 . . . . . . . . . . . . . . . 16 𝑢 ∈ V
190 vex 3440 . . . . . . . . . . . . . . . 16 𝑣 ∈ V
191189, 190coex 7860 . . . . . . . . . . . . . . 15 (𝑢𝑣) ∈ V
192186, 187, 188, 191ovmpo 7506 . . . . . . . . . . . . . 14 ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ 𝑣 ∈ (𝑅 Cn 𝑆)) → (𝑢𝐹𝑣) = (𝑢𝑣))
193184, 185, 192syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢𝐹𝑣) = (𝑢𝑣))
194 imaeq1 6004 . . . . . . . . . . . . . . 15 ( = (𝑢𝑣) → (𝐾) = ((𝑢𝑣) “ 𝐾))
195194sseq1d 3966 . . . . . . . . . . . . . 14 ( = (𝑢𝑣) → ((𝐾) ⊆ 𝑉 ↔ ((𝑢𝑣) “ 𝐾) ⊆ 𝑉))
196 cnco 23179 . . . . . . . . . . . . . . 15 ((𝑣 ∈ (𝑅 Cn 𝑆) ∧ 𝑢 ∈ (𝑆 Cn 𝑇)) → (𝑢𝑣) ∈ (𝑅 Cn 𝑇))
197185, 184, 196syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢𝑣) ∈ (𝑅 Cn 𝑇))
198 imaco 6198 . . . . . . . . . . . . . . 15 ((𝑢𝑣) “ 𝐾) = (𝑢 “ (𝑣𝐾))
199 simprrr 781 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))
20015ntrss2 22970 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ Top ∧ (𝑘𝑦) ⊆ 𝑆) → ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦))
201200ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 ∈ Top → ((𝑘𝑦) ⊆ 𝑆 → ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦)))
202201ralimdv 3146 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ Top → (∀𝑦𝑤 (𝑘𝑦) ⊆ 𝑆 → ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦)))
20388, 126, 202sylc 65 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦))
204 ss2iun 4960 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ 𝑦𝑤 (𝑘𝑦))
205203, 204syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ 𝑦𝑤 (𝑘𝑦))
206205, 108sseqtrd 3971 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ ran 𝑘)
207206adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ ran 𝑘)
208199, 207sstrd 3945 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑣𝐾) ⊆ ran 𝑘)
209 imass2 6051 . . . . . . . . . . . . . . . . 17 ((𝑣𝐾) ⊆ ran 𝑘 → (𝑢 “ (𝑣𝐾)) ⊆ (𝑢 ran 𝑘))
210208, 209syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢 “ (𝑣𝐾)) ⊆ (𝑢 ran 𝑘))
211 simprlr 779 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢 ran 𝑘) ⊆ 𝑉)
212210, 211sstrd 3945 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢 “ (𝑣𝐾)) ⊆ 𝑉)
213198, 212eqsstrid 3973 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → ((𝑢𝑣) “ 𝐾) ⊆ 𝑉)
214195, 197, 213elrabd 3649 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
215193, 214eqeltrd 2831 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
216183, 215sylan2b 594 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ (𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ∧ 𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) → (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
217216ralrimivva 3175 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉}∀𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
218188mpofun 7470 . . . . . . . . . . 11 Fun 𝐹
219 ssrab2 4030 . . . . . . . . . . . . 13 {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ⊆ (𝑆 Cn 𝑇)
220 ssrab2 4030 . . . . . . . . . . . . 13 {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ⊆ (𝑅 Cn 𝑆)
221 xpss12 5631 . . . . . . . . . . . . 13 (({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ⊆ (𝑆 Cn 𝑇) ∧ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ⊆ (𝑅 Cn 𝑆)) → ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆)))
222219, 220, 221mp2an 692 . . . . . . . . . . . 12 ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))
223 vex 3440 . . . . . . . . . . . . . 14 𝑓 ∈ V
224 vex 3440 . . . . . . . . . . . . . 14 𝑔 ∈ V
225223, 224coex 7860 . . . . . . . . . . . . 13 (𝑓𝑔) ∈ V
226188, 225dmmpo 8003 . . . . . . . . . . . 12 dom 𝐹 = ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))
227222, 226sseqtrri 3984 . . . . . . . . . . 11 ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ dom 𝐹
228 funimassov 7523 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ dom 𝐹) → ((𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉} ↔ ∀𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉}∀𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))
229218, 227, 228mp2an 692 . . . . . . . . . 10 ((𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉} ↔ ∀𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉}∀𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
230217, 229sylibr 234 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
231 funimass3 6987 . . . . . . . . . 10 ((Fun 𝐹 ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ dom 𝐹) → ((𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉} ↔ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
232218, 227, 231mp2an 692 . . . . . . . . 9 ((𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉} ↔ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))
233230, 232sylib 218 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))
234 eleq2 2820 . . . . . . . . . 10 (𝑧 = ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) → (⟨𝐴, 𝐵⟩ ∈ 𝑧 ↔ ⟨𝐴, 𝐵⟩ ∈ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})))
235 sseq1 3960 . . . . . . . . . 10 (𝑧 = ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) → (𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}) ↔ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
236234, 235anbi12d 632 . . . . . . . . 9 (𝑧 = ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) → ((⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})) ↔ (⟨𝐴, 𝐵⟩ ∈ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
237236rspcev 3577 . . . . . . . 8 ((({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)) ∧ (⟨𝐴, 𝐵⟩ ∈ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
238135, 176, 233, 237syl12anc 836 . . . . . . 7 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
239238expr 456 . . . . . 6 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ (𝐵𝐾) = 𝑤) → ((𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
240239exlimdv 1934 . . . . 5 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ (𝐵𝐾) = 𝑤) → (∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
24187, 240syldan 591 . . . 4 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ (𝑆t (𝐵𝐾)) = 𝑤) → (∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
242241expimpd 453 . . 3 ((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) → (( (𝑆t (𝐵𝐾)) = 𝑤 ∧ ∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
243242rexlimdva 3133 . 2 (𝜑 → (∃𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)( (𝑆t (𝐵𝐾)) = 𝑤 ∧ ∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
24484, 243mpd 15 1 (𝜑 → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cin 3901  wss 3902  𝒫 cpw 4550  cop 4582   cuni 4859   ciun 4941   × cxp 5614  ccnv 5615  dom cdm 5616  ran crn 5617  cima 5619  ccom 5620  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  Fincfn 8869  t crest 17321  Topctop 22806  intcnt 22930   Cn ccn 23137  Compccmp 23299  𝑛-Locally cnlly 23378   ×t ctx 23473  ko cxko 23474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-map 8752  df-en 8870  df-dom 8871  df-fin 8873  df-fi 9295  df-rest 17323  df-topgen 17344  df-top 22807  df-topon 22824  df-bases 22859  df-ntr 22933  df-nei 23011  df-cn 23140  df-cmp 23300  df-nlly 23380  df-tx 23475  df-xko 23476
This theorem is referenced by:  xkococn  23573
  Copyright terms: Public domain W3C validator