MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0trrel Structured version   Visualization version   GIF version

Theorem 0trrel 14895
Description: The empty class is a transitive relation. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
0trrel (∅ ∘ ∅) ⊆ ∅

Proof of Theorem 0trrel
StepHypRef Expression
1 co01 6217 . 2 (∅ ∘ ∅) = ∅
21eqimssi 3991 1 (∅ ∘ ∅) ⊆ ∅
Colors of variables: wff setvar class
Syntax hints:  wss 3898  c0 4282  ccom 5625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630
This theorem is referenced by:  trclfvcotrg  14930  ust0  24155
  Copyright terms: Public domain W3C validator