MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0trrel Structured version   Visualization version   GIF version

Theorem 0trrel 14701
Description: The empty class is a transitive relation. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
0trrel (∅ ∘ ∅) ⊆ ∅

Proof of Theorem 0trrel
StepHypRef Expression
1 co01 6169 . 2 (∅ ∘ ∅) = ∅
21eqimssi 3980 1 (∅ ∘ ∅) ⊆ ∅
Colors of variables: wff setvar class
Syntax hints:  wss 3888  c0 4257  ccom 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pr 5353
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2069  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3435  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-br 5076  df-opab 5138  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599
This theorem is referenced by:  trclfvcotrg  14736  ust0  23380
  Copyright terms: Public domain W3C validator