MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0trrel Structured version   Visualization version   GIF version

Theorem 0trrel 15026
Description: The empty class is a transitive relation. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
0trrel (∅ ∘ ∅) ⊆ ∅

Proof of Theorem 0trrel
StepHypRef Expression
1 co01 6289 . 2 (∅ ∘ ∅) = ∅
21eqimssi 4059 1 (∅ ∘ ∅) ⊆ ∅
Colors of variables: wff setvar class
Syntax hints:  wss 3966  c0 4342  ccom 5697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702
This theorem is referenced by:  trclfvcotrg  15061  ust0  24253
  Copyright terms: Public domain W3C validator