Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0trrel | Structured version Visualization version GIF version |
Description: The empty class is a transitive relation. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
0trrel | ⊢ (∅ ∘ ∅) ⊆ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | co01 6169 | . 2 ⊢ (∅ ∘ ∅) = ∅ | |
2 | 1 | eqimssi 3980 | 1 ⊢ (∅ ∘ ∅) ⊆ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3888 ∅c0 4257 ∘ ccom 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-opab 5138 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 |
This theorem is referenced by: trclfvcotrg 14736 ust0 23380 |
Copyright terms: Public domain | W3C validator |