![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trficl | Structured version Visualization version GIF version |
Description: The class of all transitive relations has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
Ref | Expression |
---|---|
trficl.a | ⊢ 𝐴 = {𝑧 ∣ (𝑧 ∘ 𝑧) ⊆ 𝑧} |
Ref | Expression |
---|---|
trficl | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trficl.a | . 2 ⊢ 𝐴 = {𝑧 ∣ (𝑧 ∘ 𝑧) ⊆ 𝑧} | |
2 | vex 3443 | . . 3 ⊢ 𝑥 ∈ V | |
3 | 2 | inex1 5119 | . 2 ⊢ (𝑥 ∩ 𝑦) ∈ V |
4 | id 22 | . . . 4 ⊢ (𝑧 = (𝑥 ∩ 𝑦) → 𝑧 = (𝑥 ∩ 𝑦)) | |
5 | 4, 4 | coeq12d 5628 | . . 3 ⊢ (𝑧 = (𝑥 ∩ 𝑦) → (𝑧 ∘ 𝑧) = ((𝑥 ∩ 𝑦) ∘ (𝑥 ∩ 𝑦))) |
6 | 5, 4 | sseq12d 3927 | . 2 ⊢ (𝑧 = (𝑥 ∩ 𝑦) → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ ((𝑥 ∩ 𝑦) ∘ (𝑥 ∩ 𝑦)) ⊆ (𝑥 ∩ 𝑦))) |
7 | id 22 | . . . 4 ⊢ (𝑧 = 𝑥 → 𝑧 = 𝑥) | |
8 | 7, 7 | coeq12d 5628 | . . 3 ⊢ (𝑧 = 𝑥 → (𝑧 ∘ 𝑧) = (𝑥 ∘ 𝑥)) |
9 | 8, 7 | sseq12d 3927 | . 2 ⊢ (𝑧 = 𝑥 → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ (𝑥 ∘ 𝑥) ⊆ 𝑥)) |
10 | id 22 | . . . 4 ⊢ (𝑧 = 𝑦 → 𝑧 = 𝑦) | |
11 | 10, 10 | coeq12d 5628 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑧 ∘ 𝑧) = (𝑦 ∘ 𝑦)) |
12 | 11, 10 | sseq12d 3927 | . 2 ⊢ (𝑧 = 𝑦 → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ (𝑦 ∘ 𝑦) ⊆ 𝑦)) |
13 | trin2 5866 | . 2 ⊢ (((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦) → ((𝑥 ∩ 𝑦) ∘ (𝑥 ∩ 𝑦)) ⊆ (𝑥 ∩ 𝑦)) | |
14 | 1, 3, 6, 9, 12, 13 | cllem0 39431 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1525 ∈ wcel 2083 {cab 2777 ∀wral 3107 Vcvv 3440 ∩ cin 3864 ⊆ wss 3865 ∘ ccom 5454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ral 3112 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-br 4969 df-opab 5031 df-xp 5456 df-rel 5457 df-co 5459 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |