| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trficl | Structured version Visualization version GIF version | ||
| Description: The class of all transitive relations has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
| Ref | Expression |
|---|---|
| trficl.a | ⊢ 𝐴 = {𝑧 ∣ (𝑧 ∘ 𝑧) ⊆ 𝑧} |
| Ref | Expression |
|---|---|
| trficl | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trficl.a | . 2 ⊢ 𝐴 = {𝑧 ∣ (𝑧 ∘ 𝑧) ⊆ 𝑧} | |
| 2 | vex 3463 | . . 3 ⊢ 𝑥 ∈ V | |
| 3 | 2 | inex1 5287 | . 2 ⊢ (𝑥 ∩ 𝑦) ∈ V |
| 4 | id 22 | . . . 4 ⊢ (𝑧 = (𝑥 ∩ 𝑦) → 𝑧 = (𝑥 ∩ 𝑦)) | |
| 5 | 4, 4 | coeq12d 5844 | . . 3 ⊢ (𝑧 = (𝑥 ∩ 𝑦) → (𝑧 ∘ 𝑧) = ((𝑥 ∩ 𝑦) ∘ (𝑥 ∩ 𝑦))) |
| 6 | 5, 4 | sseq12d 3992 | . 2 ⊢ (𝑧 = (𝑥 ∩ 𝑦) → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ ((𝑥 ∩ 𝑦) ∘ (𝑥 ∩ 𝑦)) ⊆ (𝑥 ∩ 𝑦))) |
| 7 | id 22 | . . . 4 ⊢ (𝑧 = 𝑥 → 𝑧 = 𝑥) | |
| 8 | 7, 7 | coeq12d 5844 | . . 3 ⊢ (𝑧 = 𝑥 → (𝑧 ∘ 𝑧) = (𝑥 ∘ 𝑥)) |
| 9 | 8, 7 | sseq12d 3992 | . 2 ⊢ (𝑧 = 𝑥 → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ (𝑥 ∘ 𝑥) ⊆ 𝑥)) |
| 10 | id 22 | . . . 4 ⊢ (𝑧 = 𝑦 → 𝑧 = 𝑦) | |
| 11 | 10, 10 | coeq12d 5844 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑧 ∘ 𝑧) = (𝑦 ∘ 𝑦)) |
| 12 | 11, 10 | sseq12d 3992 | . 2 ⊢ (𝑧 = 𝑦 → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ (𝑦 ∘ 𝑦) ⊆ 𝑦)) |
| 13 | trin2 6112 | . 2 ⊢ (((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦) → ((𝑥 ∩ 𝑦) ∘ (𝑥 ∩ 𝑦)) ⊆ (𝑥 ∩ 𝑦)) | |
| 14 | 1, 3, 6, 9, 12, 13 | cllem0 43590 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 {cab 2713 ∀wral 3051 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 ∘ ccom 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-co 5663 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |