Proof of Theorem mptrcllem
Step | Hyp | Ref
| Expression |
1 | | mptrcllem.ex2 |
. . . 4
⊢ (𝑥 ∈ 𝑉 → ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} ∈ V) |
2 | | mptrcllem.sub1 |
. . . . 5
⊢ (𝑦 = ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → (𝜑 ↔ 𝜒)) |
3 | | mptrcllem.sub2 |
. . . . 5
⊢ (𝑦 = ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ↔ 𝜃)) |
4 | 2, 3 | anbi12d 630 |
. . . 4
⊢ (𝑦 = ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → ((𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦) ↔ (𝜒 ∧ 𝜃))) |
5 | | id 22 |
. . . . . . . . 9
⊢ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 → (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧) |
6 | 5 | unssad 4125 |
. . . . . . . 8
⊢ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 → 𝑥 ⊆ 𝑧) |
7 | 6 | adantr 480 |
. . . . . . 7
⊢ (((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓) → 𝑥 ⊆ 𝑧) |
8 | 7 | a1i 11 |
. . . . . 6
⊢ (𝑥 ∈ 𝑉 → (((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓) → 𝑥 ⊆ 𝑧)) |
9 | 8 | alrimiv 1933 |
. . . . 5
⊢ (𝑥 ∈ 𝑉 → ∀𝑧(((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓) → 𝑥 ⊆ 𝑧)) |
10 | | ssintab 4901 |
. . . . 5
⊢ (𝑥 ⊆ ∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ 𝜓)} ↔ ∀𝑧(((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓) → 𝑥 ⊆ 𝑧)) |
11 | 9, 10 | sylibr 233 |
. . . 4
⊢ (𝑥 ∈ 𝑉 → 𝑥 ⊆ ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)}) |
12 | | mptrcllem.hyp1 |
. . . . 5
⊢ (𝑥 ∈ 𝑉 → 𝜒) |
13 | | mptrcllem.hyp2 |
. . . . 5
⊢ (𝑥 ∈ 𝑉 → 𝜃) |
14 | 12, 13 | jca 511 |
. . . 4
⊢ (𝑥 ∈ 𝑉 → (𝜒 ∧ 𝜃)) |
15 | 1, 4, 11, 14 | clublem 41171 |
. . 3
⊢ (𝑥 ∈ 𝑉 → ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ⊆ ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)}) |
16 | | mptrcllem.ex1 |
. . . 4
⊢ (𝑥 ∈ 𝑉 → ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∈ V) |
17 | | mptrcllem.sub3 |
. . . 4
⊢ (𝑧 = ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → (𝜓 ↔ 𝜏)) |
18 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → 𝑥 ⊆ 𝑦) |
19 | | dmss 5808 |
. . . . . . . . . . . . 13
⊢ (𝑥 ⊆ 𝑦 → dom 𝑥 ⊆ dom 𝑦) |
20 | | rnss 5845 |
. . . . . . . . . . . . 13
⊢ (𝑥 ⊆ 𝑦 → ran 𝑥 ⊆ ran 𝑦) |
21 | 19, 20 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝑥 ⊆ 𝑦 → (dom 𝑥 ⊆ dom 𝑦 ∧ ran 𝑥 ⊆ ran 𝑦)) |
22 | | unss12 4120 |
. . . . . . . . . . . 12
⊢ ((dom
𝑥 ⊆ dom 𝑦 ∧ ran 𝑥 ⊆ ran 𝑦) → (dom 𝑥 ∪ ran 𝑥) ⊆ (dom 𝑦 ∪ ran 𝑦)) |
23 | | ssres2 5916 |
. . . . . . . . . . . 12
⊢ ((dom
𝑥 ∪ ran 𝑥) ⊆ (dom 𝑦 ∪ ran 𝑦) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑦 ∪ ran 𝑦))) |
24 | 21, 22, 23 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ 𝑦 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑦 ∪ ran 𝑦))) |
25 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑦 ∪ ran 𝑦))) |
26 | | simprr 769 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦) |
27 | 25, 26 | sstrd 3935 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑦) |
28 | 18, 27 | jca 511 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → (𝑥 ⊆ 𝑦 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑦)) |
29 | 28 | a1i 11 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑉 → ((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → (𝑥 ⊆ 𝑦 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑦))) |
30 | | unss 4122 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝑦 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑦) ↔ (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑦) |
31 | 29, 30 | syl6ib 250 |
. . . . . 6
⊢ (𝑥 ∈ 𝑉 → ((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑦)) |
32 | 31 | alrimiv 1933 |
. . . . 5
⊢ (𝑥 ∈ 𝑉 → ∀𝑦((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑦)) |
33 | | ssintab 4901 |
. . . . 5
⊢ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ↔ ∀𝑦((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑦)) |
34 | 32, 33 | sylibr 233 |
. . . 4
⊢ (𝑥 ∈ 𝑉 → (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) |
35 | | mptrcllem.hyp3 |
. . . 4
⊢ (𝑥 ∈ 𝑉 → 𝜏) |
36 | 16, 17, 34, 35 | clublem 41171 |
. . 3
⊢ (𝑥 ∈ 𝑉 → ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} ⊆ ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) |
37 | 15, 36 | eqssd 3942 |
. 2
⊢ (𝑥 ∈ 𝑉 → ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} = ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)}) |
38 | 37 | mpteq2ia 5181 |
1
⊢ (𝑥 ∈ 𝑉 ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) = (𝑥 ∈ 𝑉 ↦ ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)}) |