Proof of Theorem mptrcllem
| Step | Hyp | Ref
| Expression |
| 1 | | mptrcllem.ex2 |
. . . 4
⊢ (𝑥 ∈ 𝑉 → ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} ∈ V) |
| 2 | | mptrcllem.sub1 |
. . . . 5
⊢ (𝑦 = ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → (𝜑 ↔ 𝜒)) |
| 3 | | mptrcllem.sub2 |
. . . . 5
⊢ (𝑦 = ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ↔ 𝜃)) |
| 4 | 2, 3 | anbi12d 632 |
. . . 4
⊢ (𝑦 = ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → ((𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦) ↔ (𝜒 ∧ 𝜃))) |
| 5 | | id 22 |
. . . . . . . . 9
⊢ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 → (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧) |
| 6 | 5 | unssad 4193 |
. . . . . . . 8
⊢ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 → 𝑥 ⊆ 𝑧) |
| 7 | 6 | adantr 480 |
. . . . . . 7
⊢ (((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓) → 𝑥 ⊆ 𝑧) |
| 8 | 7 | a1i 11 |
. . . . . 6
⊢ (𝑥 ∈ 𝑉 → (((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓) → 𝑥 ⊆ 𝑧)) |
| 9 | 8 | alrimiv 1927 |
. . . . 5
⊢ (𝑥 ∈ 𝑉 → ∀𝑧(((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓) → 𝑥 ⊆ 𝑧)) |
| 10 | | ssintab 4965 |
. . . . 5
⊢ (𝑥 ⊆ ∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ 𝜓)} ↔ ∀𝑧(((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓) → 𝑥 ⊆ 𝑧)) |
| 11 | 9, 10 | sylibr 234 |
. . . 4
⊢ (𝑥 ∈ 𝑉 → 𝑥 ⊆ ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)}) |
| 12 | | mptrcllem.hyp1 |
. . . . 5
⊢ (𝑥 ∈ 𝑉 → 𝜒) |
| 13 | | mptrcllem.hyp2 |
. . . . 5
⊢ (𝑥 ∈ 𝑉 → 𝜃) |
| 14 | 12, 13 | jca 511 |
. . . 4
⊢ (𝑥 ∈ 𝑉 → (𝜒 ∧ 𝜃)) |
| 15 | 1, 4, 11, 14 | clublem 43623 |
. . 3
⊢ (𝑥 ∈ 𝑉 → ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ⊆ ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)}) |
| 16 | | mptrcllem.ex1 |
. . . 4
⊢ (𝑥 ∈ 𝑉 → ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∈ V) |
| 17 | | mptrcllem.sub3 |
. . . 4
⊢ (𝑧 = ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → (𝜓 ↔ 𝜏)) |
| 18 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → 𝑥 ⊆ 𝑦) |
| 19 | | dmss 5913 |
. . . . . . . . . . . . 13
⊢ (𝑥 ⊆ 𝑦 → dom 𝑥 ⊆ dom 𝑦) |
| 20 | | rnss 5950 |
. . . . . . . . . . . . 13
⊢ (𝑥 ⊆ 𝑦 → ran 𝑥 ⊆ ran 𝑦) |
| 21 | 19, 20 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝑥 ⊆ 𝑦 → (dom 𝑥 ⊆ dom 𝑦 ∧ ran 𝑥 ⊆ ran 𝑦)) |
| 22 | | unss12 4188 |
. . . . . . . . . . . 12
⊢ ((dom
𝑥 ⊆ dom 𝑦 ∧ ran 𝑥 ⊆ ran 𝑦) → (dom 𝑥 ∪ ran 𝑥) ⊆ (dom 𝑦 ∪ ran 𝑦)) |
| 23 | | ssres2 6022 |
. . . . . . . . . . . 12
⊢ ((dom
𝑥 ∪ ran 𝑥) ⊆ (dom 𝑦 ∪ ran 𝑦) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑦 ∪ ran 𝑦))) |
| 24 | 21, 22, 23 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ 𝑦 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑦 ∪ ran 𝑦))) |
| 25 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑦 ∪ ran 𝑦))) |
| 26 | | simprr 773 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦) |
| 27 | 25, 26 | sstrd 3994 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑦) |
| 28 | 18, 27 | jca 511 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → (𝑥 ⊆ 𝑦 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑦)) |
| 29 | 28 | a1i 11 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑉 → ((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → (𝑥 ⊆ 𝑦 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑦))) |
| 30 | | unss 4190 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝑦 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑦) ↔ (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑦) |
| 31 | 29, 30 | imbitrdi 251 |
. . . . . 6
⊢ (𝑥 ∈ 𝑉 → ((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑦)) |
| 32 | 31 | alrimiv 1927 |
. . . . 5
⊢ (𝑥 ∈ 𝑉 → ∀𝑦((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑦)) |
| 33 | | ssintab 4965 |
. . . . 5
⊢ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ↔ ∀𝑦((𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑦)) |
| 34 | 32, 33 | sylibr 234 |
. . . 4
⊢ (𝑥 ∈ 𝑉 → (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) |
| 35 | | mptrcllem.hyp3 |
. . . 4
⊢ (𝑥 ∈ 𝑉 → 𝜏) |
| 36 | 16, 17, 34, 35 | clublem 43623 |
. . 3
⊢ (𝑥 ∈ 𝑉 → ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} ⊆ ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) |
| 37 | 15, 36 | eqssd 4001 |
. 2
⊢ (𝑥 ∈ 𝑉 → ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} = ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)}) |
| 38 | 37 | mpteq2ia 5245 |
1
⊢ (𝑥 ∈ 𝑉 ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) = (𝑥 ∈ 𝑉 ↦ ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)}) |