Proof of Theorem trclubgNEW
Step | Hyp | Ref
| Expression |
1 | | trclubgNEW.rex |
. . 3
⊢ (𝜑 → 𝑅 ∈ V) |
2 | 1 | dmexd 7620 |
. . . 4
⊢ (𝜑 → dom 𝑅 ∈ V) |
3 | | rnexg 7619 |
. . . . 5
⊢ (𝑅 ∈ V → ran 𝑅 ∈ V) |
4 | 1, 3 | syl 17 |
. . . 4
⊢ (𝜑 → ran 𝑅 ∈ V) |
5 | 2, 4 | xpexd 7477 |
. . 3
⊢ (𝜑 → (dom 𝑅 × ran 𝑅) ∈ V) |
6 | | unexg 7475 |
. . 3
⊢ ((𝑅 ∈ V ∧ (dom 𝑅 × ran 𝑅) ∈ V) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V) |
7 | 1, 5, 6 | syl2anc 587 |
. 2
⊢ (𝜑 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V) |
8 | | id 22 |
. . . 4
⊢ (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → 𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
9 | 8, 8 | coeq12d 5709 |
. . 3
⊢ (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → (𝑥 ∘ 𝑥) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))) |
10 | 9, 8 | sseq12d 3927 |
. 2
⊢ (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → ((𝑥 ∘ 𝑥) ⊆ 𝑥 ↔ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))) |
11 | | ssun1 4079 |
. . 3
⊢ 𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) |
12 | 11 | a1i 11 |
. 2
⊢ (𝜑 → 𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
13 | | cnvssrndm 6104 |
. . 3
⊢ ◡𝑅 ⊆ (ran 𝑅 × dom 𝑅) |
14 | | coundi 6081 |
. . . 4
⊢ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) |
15 | | cnvss 5717 |
. . . . . . . 8
⊢ (◡𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ◡◡𝑅 ⊆ ◡(ran 𝑅 × dom 𝑅)) |
16 | | coss2 5701 |
. . . . . . . 8
⊢ (◡◡𝑅 ⊆ ◡(ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ ◡◡𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ ◡(ran 𝑅 × dom 𝑅))) |
17 | 15, 16 | syl 17 |
. . . . . . 7
⊢ (◡𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ ◡◡𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ ◡(ran 𝑅 × dom 𝑅))) |
18 | | cocnvcnv2 6092 |
. . . . . . 7
⊢ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ ◡◡𝑅) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) |
19 | | cnvxp 5990 |
. . . . . . . 8
⊢ ◡(ran 𝑅 × dom 𝑅) = (dom 𝑅 × ran 𝑅) |
20 | 19 | coeq2i 5705 |
. . . . . . 7
⊢ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ ◡(ran 𝑅 × dom 𝑅)) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)) |
21 | 17, 18, 20 | 3sstr3g 3938 |
. . . . . 6
⊢ (◡𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) |
22 | | ssequn1 4087 |
. . . . . 6
⊢ (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)) ↔ (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) |
23 | 21, 22 | sylib 221 |
. . . . 5
⊢ (◡𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) |
24 | | coundir 6082 |
. . . . . 6
⊢ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)) = ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) |
25 | | coss1 5700 |
. . . . . . . . . 10
⊢ (◡◡𝑅 ⊆ ◡(ran 𝑅 × dom 𝑅) → (◡◡𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ (◡(ran 𝑅 × dom 𝑅) ∘ (dom 𝑅 × ran 𝑅))) |
26 | 15, 25 | syl 17 |
. . . . . . . . 9
⊢ (◡𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (◡◡𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ (◡(ran 𝑅 × dom 𝑅) ∘ (dom 𝑅 × ran 𝑅))) |
27 | | cocnvcnv1 6091 |
. . . . . . . . 9
⊢ (◡◡𝑅 ∘ (dom 𝑅 × ran 𝑅)) = (𝑅 ∘ (dom 𝑅 × ran 𝑅)) |
28 | 19 | coeq1i 5704 |
. . . . . . . . 9
⊢ (◡(ran 𝑅 × dom 𝑅) ∘ (dom 𝑅 × ran 𝑅)) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) |
29 | 26, 27, 28 | 3sstr3g 3938 |
. . . . . . . 8
⊢ (◡𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) |
30 | | ssequn1 4087 |
. . . . . . . 8
⊢ ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ↔ ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) |
31 | 29, 30 | sylib 221 |
. . . . . . 7
⊢ (◡𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) |
32 | | xptrrel 14392 |
. . . . . . . . 9
⊢ ((dom
𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅) |
33 | | ssun2 4080 |
. . . . . . . . 9
⊢ (dom
𝑅 × ran 𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) |
34 | 32, 33 | sstri 3903 |
. . . . . . . 8
⊢ ((dom
𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) |
35 | 34 | a1i 11 |
. . . . . . 7
⊢ (◡𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
36 | 31, 35 | eqsstrd 3932 |
. . . . . 6
⊢ (◡𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
37 | 24, 36 | eqsstrid 3942 |
. . . . 5
⊢ (◡𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
38 | 23, 37 | eqsstrd 3932 |
. . . 4
⊢ (◡𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
39 | 14, 38 | eqsstrid 3942 |
. . 3
⊢ (◡𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
40 | 13, 39 | mp1i 13 |
. 2
⊢ (𝜑 → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
41 | 7, 10, 12, 40 | clublem 40711 |
1
⊢ (𝜑 → ∩ {𝑥
∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |