Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclubgNEW Structured version   Visualization version   GIF version

Theorem trclubgNEW 38892
Description: If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.)
Hypothesis
Ref Expression
trclubgNEW.rex (𝜑𝑅 ∈ V)
Assertion
Ref Expression
trclubgNEW (𝜑 {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
Distinct variable group:   𝑥,𝑅
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem trclubgNEW
StepHypRef Expression
1 trclubgNEW.rex . . 3 (𝜑𝑅 ∈ V)
21dmexd 7379 . . . 4 (𝜑 → dom 𝑅 ∈ V)
3 rnexg 7378 . . . . 5 (𝑅 ∈ V → ran 𝑅 ∈ V)
41, 3syl 17 . . . 4 (𝜑 → ran 𝑅 ∈ V)
52, 4xpexd 7240 . . 3 (𝜑 → (dom 𝑅 × ran 𝑅) ∈ V)
6 unexg 7238 . . 3 ((𝑅 ∈ V ∧ (dom 𝑅 × ran 𝑅) ∈ V) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)
71, 5, 6syl2anc 579 . 2 (𝜑 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)
8 id 22 . . . 4 (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → 𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
98, 8coeq12d 5534 . . 3 (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → (𝑥𝑥) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
109, 8sseq12d 3853 . 2 (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → ((𝑥𝑥) ⊆ 𝑥 ↔ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
11 ssun1 3999 . . 3 𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
1211a1i 11 . 2 (𝜑𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
13 cnvssrndm 5913 . . 3 𝑅 ⊆ (ran 𝑅 × dom 𝑅)
14 coundi 5892 . . . 4 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)))
15 cnvss 5542 . . . . . . . 8 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → 𝑅(ran 𝑅 × dom 𝑅))
16 coss2 5526 . . . . . . . 8 (𝑅(ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (ran 𝑅 × dom 𝑅)))
1715, 16syl 17 . . . . . . 7 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (ran 𝑅 × dom 𝑅)))
18 cocnvcnv2 5903 . . . . . . 7 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅)
19 cnvxp 5807 . . . . . . . 8 (ran 𝑅 × dom 𝑅) = (dom 𝑅 × ran 𝑅)
2019coeq2i 5530 . . . . . . 7 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (ran 𝑅 × dom 𝑅)) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))
2117, 18, 203sstr3g 3864 . . . . . 6 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)))
22 ssequn1 4006 . . . . . 6 (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)) ↔ (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)))
2321, 22sylib 210 . . . . 5 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)))
24 coundir 5893 . . . . . 6 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)) = ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
25 coss1 5525 . . . . . . . . . 10 (𝑅(ran 𝑅 × dom 𝑅) → (𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((ran 𝑅 × dom 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
2615, 25syl 17 . . . . . . . . 9 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((ran 𝑅 × dom 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
27 cocnvcnv1 5902 . . . . . . . . 9 (𝑅 ∘ (dom 𝑅 × ran 𝑅)) = (𝑅 ∘ (dom 𝑅 × ran 𝑅))
2819coeq1i 5529 . . . . . . . . 9 ((ran 𝑅 × dom 𝑅) ∘ (dom 𝑅 × ran 𝑅)) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
2926, 27, 283sstr3g 3864 . . . . . . . 8 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
30 ssequn1 4006 . . . . . . . 8 ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ↔ ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
3129, 30sylib 210 . . . . . . 7 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
32 xptrrel 14132 . . . . . . . . 9 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)
33 ssun2 4000 . . . . . . . . 9 (dom 𝑅 × ran 𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
3432, 33sstri 3830 . . . . . . . 8 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
3534a1i 11 . . . . . . 7 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3631, 35eqsstrd 3858 . . . . . 6 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3724, 36syl5eqss 3868 . . . . 5 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3823, 37eqsstrd 3858 . . . 4 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3914, 38syl5eqss 3868 . . 3 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
4013, 39mp1i 13 . 2 (𝜑 → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
417, 10, 12, 40clublem 38884 1 (𝜑 {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  {cab 2763  Vcvv 3398  cun 3790  wss 3792   cint 4712   × cxp 5355  ccnv 5356  dom cdm 5357  ran crn 5358  ccom 5361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-int 4713  df-br 4889  df-opab 4951  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369
This theorem is referenced by:  trclubNEW  38893
  Copyright terms: Public domain W3C validator