Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclubgNEW Structured version   Visualization version   GIF version

Theorem trclubgNEW 43710
Description: If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.)
Hypothesis
Ref Expression
trclubgNEW.rex (𝜑𝑅 ∈ V)
Assertion
Ref Expression
trclubgNEW (𝜑 {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
Distinct variable group:   𝑥,𝑅
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem trclubgNEW
StepHypRef Expression
1 trclubgNEW.rex . . 3 (𝜑𝑅 ∈ V)
21dmexd 7833 . . . 4 (𝜑 → dom 𝑅 ∈ V)
3 rnexg 7832 . . . . 5 (𝑅 ∈ V → ran 𝑅 ∈ V)
41, 3syl 17 . . . 4 (𝜑 → ran 𝑅 ∈ V)
52, 4xpexd 7684 . . 3 (𝜑 → (dom 𝑅 × ran 𝑅) ∈ V)
61, 5unexd 7687 . 2 (𝜑 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)
7 id 22 . . . 4 (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → 𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
87, 7coeq12d 5803 . . 3 (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → (𝑥𝑥) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
98, 7sseq12d 3963 . 2 (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → ((𝑥𝑥) ⊆ 𝑥 ↔ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
10 ssun1 4125 . . 3 𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
1110a1i 11 . 2 (𝜑𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
12 cnvssrndm 6218 . . 3 𝑅 ⊆ (ran 𝑅 × dom 𝑅)
13 coundi 6194 . . . 4 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)))
14 cnvss 5811 . . . . . . . 8 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → 𝑅(ran 𝑅 × dom 𝑅))
15 coss2 5795 . . . . . . . 8 (𝑅(ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (ran 𝑅 × dom 𝑅)))
1614, 15syl 17 . . . . . . 7 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (ran 𝑅 × dom 𝑅)))
17 cocnvcnv2 6206 . . . . . . 7 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅)
18 cnvxp 6104 . . . . . . . 8 (ran 𝑅 × dom 𝑅) = (dom 𝑅 × ran 𝑅)
1918coeq2i 5799 . . . . . . 7 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (ran 𝑅 × dom 𝑅)) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))
2016, 17, 193sstr3g 3982 . . . . . 6 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)))
21 ssequn1 4133 . . . . . 6 (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)) ↔ (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)))
2220, 21sylib 218 . . . . 5 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)))
23 coundir 6195 . . . . . 6 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)) = ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
24 coss1 5794 . . . . . . . . . 10 (𝑅(ran 𝑅 × dom 𝑅) → (𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((ran 𝑅 × dom 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
2514, 24syl 17 . . . . . . . . 9 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((ran 𝑅 × dom 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
26 cocnvcnv1 6205 . . . . . . . . 9 (𝑅 ∘ (dom 𝑅 × ran 𝑅)) = (𝑅 ∘ (dom 𝑅 × ran 𝑅))
2718coeq1i 5798 . . . . . . . . 9 ((ran 𝑅 × dom 𝑅) ∘ (dom 𝑅 × ran 𝑅)) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
2825, 26, 273sstr3g 3982 . . . . . . . 8 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
29 ssequn1 4133 . . . . . . . 8 ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ↔ ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
3028, 29sylib 218 . . . . . . 7 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
31 xptrrel 14887 . . . . . . . . 9 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)
32 ssun2 4126 . . . . . . . . 9 (dom 𝑅 × ran 𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
3331, 32sstri 3939 . . . . . . . 8 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
3433a1i 11 . . . . . . 7 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3530, 34eqsstrd 3964 . . . . . 6 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3623, 35eqsstrid 3968 . . . . 5 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3722, 36eqsstrd 3964 . . . 4 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3813, 37eqsstrid 3968 . . 3 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3912, 38mp1i 13 . 2 (𝜑 → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
406, 9, 11, 39clublem 43702 1 (𝜑 {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  Vcvv 3436  cun 3895  wss 3897   cint 4895   × cxp 5612  ccnv 5613  dom cdm 5614  ran crn 5615  ccom 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626
This theorem is referenced by:  trclubNEW  43711
  Copyright terms: Public domain W3C validator