| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com4t | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Rotate twice. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com4t | ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4l 92 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 3 | 2 | com4l 92 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4r 94 com24 95 isofrlem 7274 tfindsg 7791 tfr3 8318 pssnn 9078 dfac5 10017 cfcoflem 10160 isf32lem12 10252 ltexprlem7 10930 dirtr 18505 erclwwlktr 29997 erclwwlkntr 30046 3cyclfrgrrn1 30260 frgrregord013 30370 chirredlem1 32365 mdsymlem4 32381 cdj3lem2b 32412 relpfrlem 44985 ssfz12 47344 |
| Copyright terms: Public domain | W3C validator |