MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com4t Structured version   Visualization version   GIF version

Theorem com4t 93
Description: Commutation of antecedents. Rotate twice. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
com4t (𝜒 → (𝜃 → (𝜑 → (𝜓𝜏))))

Proof of Theorem com4t
StepHypRef Expression
1 com4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21com4l 92 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜑𝜏))))
32com4l 92 1 (𝜒 → (𝜃 → (𝜑 → (𝜓𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4r  94  com24  95  isofrlem  7315  tfindsg  7837  tfr3  8367  pssnn  9132  dfac5  10082  cfcoflem  10225  isf32lem12  10317  ltexprlem7  10995  dirtr  18561  erclwwlktr  29951  erclwwlkntr  30000  3cyclfrgrrn1  30214  frgrregord013  30324  chirredlem1  32319  mdsymlem4  32335  cdj3lem2b  32366  relpfrlem  44943  ssfz12  47315
  Copyright terms: Public domain W3C validator