![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > com4t | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate twice. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com4t | ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com4l 92 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
3 | 2 | com4l 92 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com4r 94 com24 95 isofrlem 7347 tfindsg 7866 tfr3 8420 pssnn 9193 pssnnOLD 9290 dfac5 10153 cfcoflem 10297 isf32lem12 10389 ltexprlem7 11067 dirtr 18597 erclwwlktr 29904 erclwwlkntr 29953 3cyclfrgrrn1 30167 frgrregord013 30277 chirredlem1 32272 mdsymlem4 32288 cdj3lem2b 32319 ssfz12 46829 |
Copyright terms: Public domain | W3C validator |