| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com4t | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Rotate twice. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com4t | ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4l 92 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 3 | 2 | com4l 92 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4r 94 com24 95 isofrlem 7338 tfindsg 7861 tfr3 8418 pssnn 9187 dfac5 10148 cfcoflem 10291 isf32lem12 10383 ltexprlem7 11061 dirtr 18617 erclwwlktr 30008 erclwwlkntr 30057 3cyclfrgrrn1 30271 frgrregord013 30381 chirredlem1 32376 mdsymlem4 32392 cdj3lem2b 32423 relpfrlem 44945 ssfz12 47310 |
| Copyright terms: Public domain | W3C validator |