| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com4t | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Rotate twice. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com4t | ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4l 92 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 3 | 2 | com4l 92 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4r 94 com24 95 isofrlem 7280 tfindsg 7797 tfr3 8324 pssnn 9085 dfac5 10027 cfcoflem 10170 isf32lem12 10262 ltexprlem7 10940 dirtr 18510 erclwwlktr 30004 erclwwlkntr 30053 3cyclfrgrrn1 30267 frgrregord013 30377 chirredlem1 32372 mdsymlem4 32388 cdj3lem2b 32419 relpfrlem 45070 ssfz12 47438 |
| Copyright terms: Public domain | W3C validator |