| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com4t | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Rotate twice. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com4t | ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4l 92 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 3 | 2 | com4l 92 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4r 94 com24 95 isofrlem 7281 tfindsg 7801 tfr3 8328 pssnn 9092 dfac5 10042 cfcoflem 10185 isf32lem12 10277 ltexprlem7 10955 dirtr 18526 erclwwlktr 29984 erclwwlkntr 30033 3cyclfrgrrn1 30247 frgrregord013 30357 chirredlem1 32352 mdsymlem4 32368 cdj3lem2b 32399 relpfrlem 44927 ssfz12 47299 |
| Copyright terms: Public domain | W3C validator |