Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > com4t | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate twice. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com4t | ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com4l 92 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
3 | 2 | com4l 92 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com4r 94 com24 95 isofrlem 7204 tfindsg 7695 tfr3 8214 pssnn 8916 pssnnOLD 9001 dfac5 9868 cfcoflem 10012 isf32lem12 10104 ltexprlem7 10782 dirtr 18301 erclwwlktr 28365 erclwwlkntr 28414 3cyclfrgrrn1 28628 frgrregord013 28738 chirredlem1 30731 mdsymlem4 30747 cdj3lem2b 30778 ssfz12 44758 |
Copyright terms: Public domain | W3C validator |