Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > com4t | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate twice. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com4t | ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com4l 92 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
3 | 2 | com4l 92 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com4r 94 com24 95 isofrlem 7211 tfindsg 7707 tfr3 8230 pssnn 8951 pssnnOLD 9040 dfac5 9884 cfcoflem 10028 isf32lem12 10120 ltexprlem7 10798 dirtr 18320 erclwwlktr 28386 erclwwlkntr 28435 3cyclfrgrrn1 28649 frgrregord013 28759 chirredlem1 30752 mdsymlem4 30768 cdj3lem2b 30799 ssfz12 44806 |
Copyright terms: Public domain | W3C validator |