![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > com4t | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate twice. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com4t | ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com4l 92 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
3 | 2 | com4l 92 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com4r 94 com24 95 isofrlem 7341 tfindsg 7854 tfr3 8403 pssnn 9172 pssnnOLD 9269 dfac5 10127 cfcoflem 10271 isf32lem12 10363 ltexprlem7 11041 dirtr 18561 erclwwlktr 29540 erclwwlkntr 29589 3cyclfrgrrn1 29803 frgrregord013 29913 chirredlem1 31908 mdsymlem4 31924 cdj3lem2b 31955 ssfz12 46322 |
Copyright terms: Public domain | W3C validator |