![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > com4t | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate twice. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com4t | ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com4l 92 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
3 | 2 | com4l 92 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com4r 94 com24 95 isofrlem 7376 tfindsg 7898 tfr3 8455 pssnn 9234 dfac5 10198 cfcoflem 10341 isf32lem12 10433 ltexprlem7 11111 dirtr 18672 erclwwlktr 30054 erclwwlkntr 30103 3cyclfrgrrn1 30317 frgrregord013 30427 chirredlem1 32422 mdsymlem4 32438 cdj3lem2b 32469 ssfz12 47229 |
Copyright terms: Public domain | W3C validator |