MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com4t Structured version   Visualization version   GIF version

Theorem com4t 93
Description: Commutation of antecedents. Rotate twice. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
com4t (𝜒 → (𝜃 → (𝜑 → (𝜓𝜏))))

Proof of Theorem com4t
StepHypRef Expression
1 com4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21com4l 92 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜑𝜏))))
32com4l 92 1 (𝜒 → (𝜃 → (𝜑 → (𝜓𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4r  94  com24  95  isofrlem  7341  tfindsg  7854  tfr3  8403  pssnn  9172  pssnnOLD  9269  dfac5  10127  cfcoflem  10271  isf32lem12  10363  ltexprlem7  11041  dirtr  18561  erclwwlktr  29540  erclwwlkntr  29589  3cyclfrgrrn1  29803  frgrregord013  29913  chirredlem1  31908  mdsymlem4  31924  cdj3lem2b  31955  ssfz12  46322
  Copyright terms: Public domain W3C validator