MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com4t Structured version   Visualization version   GIF version

Theorem com4t 93
Description: Commutation of antecedents. Rotate twice. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
com4t (𝜒 → (𝜃 → (𝜑 → (𝜓𝜏))))

Proof of Theorem com4t
StepHypRef Expression
1 com4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21com4l 92 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜑𝜏))))
32com4l 92 1 (𝜒 → (𝜃 → (𝜑 → (𝜓𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4r  94  com24  95  isofrlem  7280  tfindsg  7797  tfr3  8324  pssnn  9085  dfac5  10027  cfcoflem  10170  isf32lem12  10262  ltexprlem7  10940  dirtr  18510  erclwwlktr  30004  erclwwlkntr  30053  3cyclfrgrrn1  30267  frgrregord013  30377  chirredlem1  32372  mdsymlem4  32388  cdj3lem2b  32419  relpfrlem  45070  ssfz12  47438
  Copyright terms: Public domain W3C validator