| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com4t | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Rotate twice. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com4t | ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4l 92 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 3 | 2 | com4l 92 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4r 94 com24 95 isofrlem 7315 tfindsg 7837 tfr3 8367 pssnn 9132 dfac5 10082 cfcoflem 10225 isf32lem12 10317 ltexprlem7 10995 dirtr 18561 erclwwlktr 29951 erclwwlkntr 30000 3cyclfrgrrn1 30214 frgrregord013 30324 chirredlem1 32319 mdsymlem4 32335 cdj3lem2b 32366 relpfrlem 44943 ssfz12 47315 |
| Copyright terms: Public domain | W3C validator |