MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com4t Structured version   Visualization version   GIF version

Theorem com4t 93
Description: Commutation of antecedents. Rotate twice. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
com4t (𝜒 → (𝜃 → (𝜑 → (𝜓𝜏))))

Proof of Theorem com4t
StepHypRef Expression
1 com4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21com4l 92 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜑𝜏))))
32com4l 92 1 (𝜒 → (𝜃 → (𝜑 → (𝜓𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4r  94  com24  95  isofrlem  7318  tfindsg  7840  tfr3  8370  pssnn  9138  dfac5  10089  cfcoflem  10232  isf32lem12  10324  ltexprlem7  11002  dirtr  18568  erclwwlktr  29958  erclwwlkntr  30007  3cyclfrgrrn1  30221  frgrregord013  30331  chirredlem1  32326  mdsymlem4  32342  cdj3lem2b  32373  relpfrlem  44950  ssfz12  47319
  Copyright terms: Public domain W3C validator