Step | Hyp | Ref
| Expression |
1 | | 3cyclfrgrrn1.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | 3cyclfrgrrn1.e |
. . . 4
⊢ 𝐸 = (Edg‘𝐺) |
3 | 1, 2 | 2pthfrgrrn2 28172 |
. . 3
⊢ (𝐺 ∈ FriendGraph →
∀𝑎 ∈ 𝑉 ∀𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥 ∈ 𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧))) |
4 | | necom 3004 |
. . . . . . . . . . . 12
⊢ (𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴) |
5 | | eldifsn 4680 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ (𝑉 ∖ {𝐴}) ↔ (𝐶 ∈ 𝑉 ∧ 𝐶 ≠ 𝐴)) |
6 | 5 | simplbi2com 506 |
. . . . . . . . . . . 12
⊢ (𝐶 ≠ 𝐴 → (𝐶 ∈ 𝑉 → 𝐶 ∈ (𝑉 ∖ {𝐴}))) |
7 | 4, 6 | sylbi 220 |
. . . . . . . . . . 11
⊢ (𝐴 ≠ 𝐶 → (𝐶 ∈ 𝑉 → 𝐶 ∈ (𝑉 ∖ {𝐴}))) |
8 | 7 | com12 32 |
. . . . . . . . . 10
⊢ (𝐶 ∈ 𝑉 → (𝐴 ≠ 𝐶 → 𝐶 ∈ (𝑉 ∖ {𝐴}))) |
9 | 8 | adantl 485 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 ≠ 𝐶 → 𝐶 ∈ (𝑉 ∖ {𝐴}))) |
10 | 9 | imp 410 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 ≠ 𝐶) → 𝐶 ∈ (𝑉 ∖ {𝐴})) |
11 | | sneq 4535 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) |
12 | 11 | difeq2d 4030 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → (𝑉 ∖ {𝑎}) = (𝑉 ∖ {𝐴})) |
13 | | preq1 4629 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝐴 → {𝑎, 𝑥} = {𝐴, 𝑥}) |
14 | 13 | eleq1d 2836 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝐴 → ({𝑎, 𝑥} ∈ 𝐸 ↔ {𝐴, 𝑥} ∈ 𝐸)) |
15 | 14 | anbi1d 632 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐴 → (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ↔ ({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸))) |
16 | | neeq1 3013 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝐴 → (𝑎 ≠ 𝑥 ↔ 𝐴 ≠ 𝑥)) |
17 | 16 | anbi1d 632 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐴 → ((𝑎 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧) ↔ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧))) |
18 | 15, 17 | anbi12d 633 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐴 → ((({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)) ↔ (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)))) |
19 | 18 | rexbidv 3221 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → (∃𝑥 ∈ 𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)) ↔ ∃𝑥 ∈ 𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)))) |
20 | 12, 19 | raleqbidv 3319 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (∀𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥 ∈ 𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)) ↔ ∀𝑧 ∈ (𝑉 ∖ {𝐴})∃𝑥 ∈ 𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)))) |
21 | 20 | rspcv 3538 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (∀𝑎 ∈ 𝑉 ∀𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥 ∈ 𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)) → ∀𝑧 ∈ (𝑉 ∖ {𝐴})∃𝑥 ∈ 𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)))) |
22 | 21 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 ≠ 𝐶) → (∀𝑎 ∈ 𝑉 ∀𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥 ∈ 𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)) → ∀𝑧 ∈ (𝑉 ∖ {𝐴})∃𝑥 ∈ 𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)))) |
23 | | preq2 4630 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝐶 → {𝑥, 𝑧} = {𝑥, 𝐶}) |
24 | 23 | eleq1d 2836 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝐶 → ({𝑥, 𝑧} ∈ 𝐸 ↔ {𝑥, 𝐶} ∈ 𝐸)) |
25 | 24 | anbi2d 631 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐶 → (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ↔ ({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸))) |
26 | | neeq2 3014 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝐶 → (𝑥 ≠ 𝑧 ↔ 𝑥 ≠ 𝐶)) |
27 | 26 | anbi2d 631 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐶 → ((𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧) ↔ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝐶))) |
28 | 25, 27 | anbi12d 633 |
. . . . . . . . . 10
⊢ (𝑧 = 𝐶 → ((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)) ↔ (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝐶)))) |
29 | 28 | rexbidv 3221 |
. . . . . . . . 9
⊢ (𝑧 = 𝐶 → (∃𝑥 ∈ 𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)) ↔ ∃𝑥 ∈ 𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝐶)))) |
30 | 29 | rspcv 3538 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝑉 ∖ {𝐴}) → (∀𝑧 ∈ (𝑉 ∖ {𝐴})∃𝑥 ∈ 𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)) → ∃𝑥 ∈ 𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝐶)))) |
31 | 10, 22, 30 | sylsyld 61 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 ≠ 𝐶) → (∀𝑎 ∈ 𝑉 ∀𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥 ∈ 𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)) → ∃𝑥 ∈ 𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝐶)))) |
32 | 1, 2 | 2pthfrgrrn 28171 |
. . . . . . . . . 10
⊢ (𝐺 ∈ FriendGraph →
∀𝑢 ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦 ∈ 𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸)) |
33 | | necom 3004 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ≠ 𝑥 ↔ 𝑥 ≠ 𝐴) |
34 | | eldifsn 4680 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ (𝑉 ∖ {𝐴}) ↔ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 𝐴)) |
35 | 34 | simplbi2com 506 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ≠ 𝐴 → (𝑥 ∈ 𝑉 → 𝑥 ∈ (𝑉 ∖ {𝐴}))) |
36 | 33, 35 | sylbi 220 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 ≠ 𝑥 → (𝑥 ∈ 𝑉 → 𝑥 ∈ (𝑉 ∖ {𝐴}))) |
37 | 36 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ≠ 𝑥 ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ 𝑉 → 𝑥 ∈ (𝑉 ∖ {𝐴}))) |
38 | 37 | imp 410 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ≠ 𝑥 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ (𝑉 ∖ {𝐴})) |
39 | | sneq 4535 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑢 = 𝐴 → {𝑢} = {𝐴}) |
40 | 39 | difeq2d 4030 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑢 = 𝐴 → (𝑉 ∖ {𝑢}) = (𝑉 ∖ {𝐴})) |
41 | | preq1 4629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑢 = 𝐴 → {𝑢, 𝑦} = {𝐴, 𝑦}) |
42 | 41 | eleq1d 2836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑢 = 𝐴 → ({𝑢, 𝑦} ∈ 𝐸 ↔ {𝐴, 𝑦} ∈ 𝐸)) |
43 | 42 | anbi1d 632 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑢 = 𝐴 → (({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) ↔ ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸))) |
44 | 43 | rexbidv 3221 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑢 = 𝐴 → (∃𝑦 ∈ 𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) ↔ ∃𝑦 ∈ 𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸))) |
45 | 40, 44 | raleqbidv 3319 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 = 𝐴 → (∀𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦 ∈ 𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) ↔ ∀𝑣 ∈ (𝑉 ∖ {𝐴})∃𝑦 ∈ 𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸))) |
46 | 45 | rspcv 3538 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦 ∈ 𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ∀𝑣 ∈ (𝑉 ∖ {𝐴})∃𝑦 ∈ 𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸))) |
47 | 46 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ≠ 𝑥 ∧ 𝐴 ∈ 𝑉) → (∀𝑢 ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦 ∈ 𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ∀𝑣 ∈ (𝑉 ∖ {𝐴})∃𝑦 ∈ 𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸))) |
48 | 47 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ≠ 𝑥 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → (∀𝑢 ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦 ∈ 𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ∀𝑣 ∈ (𝑉 ∖ {𝐴})∃𝑦 ∈ 𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸))) |
49 | | preq2 4630 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑣 = 𝑥 → {𝑦, 𝑣} = {𝑦, 𝑥}) |
50 | 49 | eleq1d 2836 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 = 𝑥 → ({𝑦, 𝑣} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸)) |
51 | 50 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 = 𝑥 → (({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) ↔ ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸))) |
52 | 51 | rexbidv 3221 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 = 𝑥 → (∃𝑦 ∈ 𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) ↔ ∃𝑦 ∈ 𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸))) |
53 | 52 | rspcv 3538 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (𝑉 ∖ {𝐴}) → (∀𝑣 ∈ (𝑉 ∖ {𝐴})∃𝑦 ∈ 𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ∃𝑦 ∈ 𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸))) |
54 | 38, 48, 53 | sylsyld 61 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ≠ 𝑥 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → (∀𝑢 ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦 ∈ 𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ∃𝑦 ∈ 𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸))) |
55 | | prcom 4628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {𝐴, 𝑦} = {𝑦, 𝐴} |
56 | 55 | eleq1i 2842 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ({𝐴, 𝑦} ∈ 𝐸 ↔ {𝑦, 𝐴} ∈ 𝐸) |
57 | | prcom 4628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {𝑦, 𝑥} = {𝑥, 𝑦} |
58 | 57 | eleq1i 2842 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ({𝑦, 𝑥} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸) |
59 | 56, 58 | anbi12ci 630 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐴} ∈ 𝐸)) |
60 | | preq2 4630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑏 = 𝑥 → {𝐴, 𝑏} = {𝐴, 𝑥}) |
61 | 60 | eleq1d 2836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 = 𝑥 → ({𝐴, 𝑏} ∈ 𝐸 ↔ {𝐴, 𝑥} ∈ 𝐸)) |
62 | | preq1 4629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑏 = 𝑥 → {𝑏, 𝑐} = {𝑥, 𝑐}) |
63 | 62 | eleq1d 2836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 = 𝑥 → ({𝑏, 𝑐} ∈ 𝐸 ↔ {𝑥, 𝑐} ∈ 𝐸)) |
64 | | biidd 265 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 = 𝑥 → ({𝑐, 𝐴} ∈ 𝐸 ↔ {𝑐, 𝐴} ∈ 𝐸)) |
65 | 61, 63, 64 | 3anbi123d 1433 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑏 = 𝑥 → (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))) |
66 | | biidd 265 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = 𝑦 → ({𝐴, 𝑥} ∈ 𝐸 ↔ {𝐴, 𝑥} ∈ 𝐸)) |
67 | | preq2 4630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑐 = 𝑦 → {𝑥, 𝑐} = {𝑥, 𝑦}) |
68 | 67 | eleq1d 2836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = 𝑦 → ({𝑥, 𝑐} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸)) |
69 | | preq1 4629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑐 = 𝑦 → {𝑐, 𝐴} = {𝑦, 𝐴}) |
70 | 69 | eleq1d 2836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = 𝑦 → ({𝑐, 𝐴} ∈ 𝐸 ↔ {𝑦, 𝐴} ∈ 𝐸)) |
71 | 66, 68, 70 | 3anbi123d 1433 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = 𝑦 → (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐴} ∈ 𝐸))) |
72 | 65, 71 | rspc2ev 3555 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ ({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐴} ∈ 𝐸)) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)) |
73 | 72 | 3expa 1115 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐴} ∈ 𝐸)) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)) |
74 | 73 | expcom 417 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐴} ∈ 𝐸) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))) |
75 | 74 | 3expib 1119 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ({𝐴, 𝑥} ∈ 𝐸 → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐴} ∈ 𝐸) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))) |
76 | 59, 75 | syl5bi 245 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({𝐴, 𝑥} ∈ 𝐸 → (({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))) |
77 | 76 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) → (({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))) |
78 | 77 | com13 88 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸) → (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))) |
79 | 78 | rexlimdva 3208 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ 𝑉 → (∃𝑦 ∈ 𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸) → (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))) |
80 | 79 | com13 88 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) → (∃𝑦 ∈ 𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸) → (𝑥 ∈ 𝑉 → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))) |
81 | 54, 80 | syl9 77 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ≠ 𝑥 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) → (∀𝑢 ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦 ∈ 𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → (𝑥 ∈ 𝑉 → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))) |
82 | 81 | exp31 423 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ≠ 𝑥 → (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝑉 → (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) → (∀𝑢 ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦 ∈ 𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → (𝑥 ∈ 𝑉 → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))))) |
83 | 82 | com24 95 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ≠ 𝑥 → (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) → (𝑥 ∈ 𝑉 → (𝐴 ∈ 𝑉 → (∀𝑢 ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦 ∈ 𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → (𝑥 ∈ 𝑉 → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))))) |
84 | 83 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝐶) → (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) → (𝑥 ∈ 𝑉 → (𝐴 ∈ 𝑉 → (∀𝑢 ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦 ∈ 𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → (𝑥 ∈ 𝑉 → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))))) |
85 | 84 | impcom 411 |
. . . . . . . . . . . . . . 15
⊢ ((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝐶)) → (𝑥 ∈ 𝑉 → (𝐴 ∈ 𝑉 → (∀𝑢 ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦 ∈ 𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → (𝑥 ∈ 𝑉 → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))))) |
86 | 85 | com15 101 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑉 → (𝑥 ∈ 𝑉 → (𝐴 ∈ 𝑉 → (∀𝑢 ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦 ∈ 𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝐶)) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))))) |
87 | 86 | pm2.43i 52 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑉 → (𝐴 ∈ 𝑉 → (∀𝑢 ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦 ∈ 𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝐶)) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))) |
88 | 87 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝑉 → (∀𝑢 ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦 ∈ 𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝐶)) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))) |
89 | 88 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 ≠ 𝐶) → (𝑥 ∈ 𝑉 → (∀𝑢 ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦 ∈ 𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝐶)) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))) |
90 | 89 | com4t 93 |
. . . . . . . . . 10
⊢
(∀𝑢 ∈
𝑉 ∀𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦 ∈ 𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝐶)) → (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 ≠ 𝐶) → (𝑥 ∈ 𝑉 → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))) |
91 | 32, 90 | syl 17 |
. . . . . . . . 9
⊢ (𝐺 ∈ FriendGraph →
((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝐶)) → (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 ≠ 𝐶) → (𝑥 ∈ 𝑉 → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))) |
92 | 91 | com14 96 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑉 → ((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝐶)) → (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 ≠ 𝐶) → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))) |
93 | 92 | rexlimiv 3204 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴 ≠ 𝑥 ∧ 𝑥 ≠ 𝐶)) → (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 ≠ 𝐶) → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))) |
94 | 31, 93 | syl6 35 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 ≠ 𝐶) → (∀𝑎 ∈ 𝑉 ∀𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥 ∈ 𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)) → (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 ≠ 𝐶) → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))) |
95 | 94 | pm2.43a 54 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 ≠ 𝐶) → (∀𝑎 ∈ 𝑉 ∀𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥 ∈ 𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)) → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))) |
96 | 95 | ex 416 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 ≠ 𝐶 → (∀𝑎 ∈ 𝑉 ∀𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥 ∈ 𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)) → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))) |
97 | 96 | com4t 93 |
. . 3
⊢
(∀𝑎 ∈
𝑉 ∀𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥 ∈ 𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎 ≠ 𝑥 ∧ 𝑥 ≠ 𝑧)) → (𝐺 ∈ FriendGraph → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 ≠ 𝐶 → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))) |
98 | 3, 97 | mpcom 38 |
. 2
⊢ (𝐺 ∈ FriendGraph →
((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 ≠ 𝐶 → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))) |
99 | 98 | 3imp 1108 |
1
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 ≠ 𝐶) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)) |