Step | Hyp | Ref
| Expression |
1 | | cdj3lem2.1 |
. . 3
⊢ 𝐴 ∈
Sℋ |
2 | | cdj3lem2.2 |
. . 3
⊢ 𝐵 ∈
Sℋ |
3 | 1, 2 | cdj3lem1 30515 |
. 2
⊢
(∃𝑣 ∈
ℝ (0 < 𝑣 ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦)))) → (𝐴 ∩ 𝐵) = 0ℋ) |
4 | 1, 2 | shseli 29397 |
. . . . . . . 8
⊢ (𝑢 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑡 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑢 = (𝑡 +ℎ ℎ)) |
5 | 4 | biimpi 219 |
. . . . . . 7
⊢ (𝑢 ∈ (𝐴 +ℋ 𝐵) → ∃𝑡 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑢 = (𝑡 +ℎ ℎ)) |
6 | | fveq2 6717 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑡 → (normℎ‘𝑥) =
(normℎ‘𝑡)) |
7 | 6 | oveq1d 7228 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑡 → ((normℎ‘𝑥) +
(normℎ‘𝑦)) = ((normℎ‘𝑡) +
(normℎ‘𝑦))) |
8 | | fvoveq1 7236 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑡 → (normℎ‘(𝑥 +ℎ 𝑦)) =
(normℎ‘(𝑡 +ℎ 𝑦))) |
9 | 8 | oveq2d 7229 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑡 → (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) = (𝑣 ·
(normℎ‘(𝑡 +ℎ 𝑦)))) |
10 | 7, 9 | breq12d 5066 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑡 →
(((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) ↔
((normℎ‘𝑡) + (normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ 𝑦))))) |
11 | | fveq2 6717 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ℎ → (normℎ‘𝑦) =
(normℎ‘ℎ)) |
12 | 11 | oveq2d 7229 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ℎ → ((normℎ‘𝑡) +
(normℎ‘𝑦)) = ((normℎ‘𝑡) +
(normℎ‘ℎ))) |
13 | | oveq2 7221 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ℎ → (𝑡 +ℎ 𝑦) = (𝑡 +ℎ ℎ)) |
14 | 13 | fveq2d 6721 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ℎ → (normℎ‘(𝑡 +ℎ 𝑦)) =
(normℎ‘(𝑡 +ℎ ℎ))) |
15 | 14 | oveq2d 7229 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ℎ → (𝑣 ·
(normℎ‘(𝑡 +ℎ 𝑦))) = (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) |
16 | 12, 15 | breq12d 5066 |
. . . . . . . . . . . 12
⊢ (𝑦 = ℎ → (((normℎ‘𝑡) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ 𝑦))) ↔
((normℎ‘𝑡) + (normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ))))) |
17 | 10, 16 | rspc2v 3547 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) →
((normℎ‘𝑡) + (normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ))))) |
18 | | cdj3lem2.3 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) |
19 | 1, 2, 18 | cdj3lem2 30516 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝑡 +ℎ ℎ)) = 𝑡) |
20 | 19 | 3expa 1120 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝑡 +ℎ ℎ)) = 𝑡) |
21 | 20 | fveq2d 6721 |
. . . . . . . . . . . . . . 15
⊢ (((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) →
(normℎ‘(𝑆‘(𝑡 +ℎ ℎ))) = (normℎ‘𝑡)) |
22 | 21 | ad2ant2r 747 |
. . . . . . . . . . . . . 14
⊢ ((((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) ∧
((normℎ‘𝑡) + (normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) ∧ ((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝑣 ∈ ℝ)) →
(normℎ‘(𝑆‘(𝑡 +ℎ ℎ))) = (normℎ‘𝑡)) |
23 | 2 | sheli 29295 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ ∈ 𝐵 → ℎ ∈ ℋ) |
24 | | normge0 29207 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ ∈ ℋ → 0 ≤
(normℎ‘ℎ)) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ ∈ 𝐵 → 0 ≤
(normℎ‘ℎ)) |
26 | 25 | adantl 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → 0 ≤
(normℎ‘ℎ)) |
27 | 1 | sheli 29295 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ 𝐴 → 𝑡 ∈ ℋ) |
28 | | normcl 29206 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ ℋ →
(normℎ‘𝑡) ∈ ℝ) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ 𝐴 → (normℎ‘𝑡) ∈
ℝ) |
30 | | normcl 29206 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ ∈ ℋ →
(normℎ‘ℎ) ∈ ℝ) |
31 | 23, 30 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ ∈ 𝐵 → (normℎ‘ℎ) ∈
ℝ) |
32 | | addge01 11342 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((normℎ‘𝑡) ∈ ℝ ∧
(normℎ‘ℎ) ∈ ℝ) → (0 ≤
(normℎ‘ℎ) ↔ (normℎ‘𝑡) ≤
((normℎ‘𝑡) + (normℎ‘ℎ)))) |
33 | 29, 31, 32 | syl2an 599 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (0 ≤
(normℎ‘ℎ) ↔ (normℎ‘𝑡) ≤
((normℎ‘𝑡) + (normℎ‘ℎ)))) |
34 | 26, 33 | mpbid 235 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) →
(normℎ‘𝑡) ≤ ((normℎ‘𝑡) +
(normℎ‘ℎ))) |
35 | 34 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) ∧ 𝑣 ∈ ℝ) →
(normℎ‘𝑡) ≤ ((normℎ‘𝑡) +
(normℎ‘ℎ))) |
36 | 29 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) ∧ 𝑣 ∈ ℝ) →
(normℎ‘𝑡) ∈ ℝ) |
37 | | readdcl 10812 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((normℎ‘𝑡) ∈ ℝ ∧
(normℎ‘ℎ) ∈ ℝ) →
((normℎ‘𝑡) + (normℎ‘ℎ)) ∈
ℝ) |
38 | 29, 31, 37 | syl2an 599 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) →
((normℎ‘𝑡) + (normℎ‘ℎ)) ∈
ℝ) |
39 | 38 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) ∧ 𝑣 ∈ ℝ) →
((normℎ‘𝑡) + (normℎ‘ℎ)) ∈
ℝ) |
40 | | hvaddcl 29093 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑡 ∈ ℋ ∧ ℎ ∈ ℋ) → (𝑡 +ℎ ℎ) ∈
ℋ) |
41 | 27, 23, 40 | syl2an 599 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (𝑡 +ℎ ℎ) ∈ ℋ) |
42 | | normcl 29206 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑡 +ℎ ℎ) ∈ ℋ →
(normℎ‘(𝑡 +ℎ ℎ)) ∈ ℝ) |
43 | 41, 42 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) →
(normℎ‘(𝑡 +ℎ ℎ)) ∈ ℝ) |
44 | | remulcl 10814 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 ∈ ℝ ∧
(normℎ‘(𝑡 +ℎ ℎ)) ∈ ℝ) → (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ))) ∈ ℝ) |
45 | 43, 44 | sylan2 596 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑣 ∈ ℝ ∧ (𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵)) → (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ))) ∈ ℝ) |
46 | 45 | ancoms 462 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) ∧ 𝑣 ∈ ℝ) → (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ))) ∈ ℝ) |
47 | | letr 10926 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((normℎ‘𝑡) ∈ ℝ ∧
((normℎ‘𝑡) + (normℎ‘ℎ)) ∈ ℝ ∧ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ))) ∈ ℝ) →
(((normℎ‘𝑡) ≤ ((normℎ‘𝑡) +
(normℎ‘ℎ)) ∧ ((normℎ‘𝑡) +
(normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) →
(normℎ‘𝑡) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ))))) |
48 | 36, 39, 46, 47 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) ∧ 𝑣 ∈ ℝ) →
(((normℎ‘𝑡) ≤ ((normℎ‘𝑡) +
(normℎ‘ℎ)) ∧ ((normℎ‘𝑡) +
(normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) →
(normℎ‘𝑡) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ))))) |
49 | 35, 48 | mpand 695 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) ∧ 𝑣 ∈ ℝ) →
(((normℎ‘𝑡) + (normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ))) →
(normℎ‘𝑡) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ))))) |
50 | 49 | imp 410 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) ∧ 𝑣 ∈ ℝ) ∧
((normℎ‘𝑡) + (normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) →
(normℎ‘𝑡) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) |
51 | 50 | an32s 652 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) ∧
((normℎ‘𝑡) + (normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) ∧ 𝑣 ∈ ℝ) →
(normℎ‘𝑡) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) |
52 | 51 | adantrl 716 |
. . . . . . . . . . . . . 14
⊢ ((((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) ∧
((normℎ‘𝑡) + (normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) ∧ ((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝑣 ∈ ℝ)) →
(normℎ‘𝑡) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) |
53 | 22, 52 | eqbrtrd 5075 |
. . . . . . . . . . . . 13
⊢ ((((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) ∧
((normℎ‘𝑡) + (normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) ∧ ((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝑣 ∈ ℝ)) →
(normℎ‘(𝑆‘(𝑡 +ℎ ℎ))) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) |
54 | | 2fveq3 6722 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑡 +ℎ ℎ) → (normℎ‘(𝑆‘𝑢)) = (normℎ‘(𝑆‘(𝑡 +ℎ ℎ)))) |
55 | | fveq2 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = (𝑡 +ℎ ℎ) → (normℎ‘𝑢) =
(normℎ‘(𝑡 +ℎ ℎ))) |
56 | 55 | oveq2d 7229 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑡 +ℎ ℎ) → (𝑣 ·
(normℎ‘𝑢)) = (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) |
57 | 54, 56 | breq12d 5066 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (𝑡 +ℎ ℎ) →
((normℎ‘(𝑆‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢)) ↔
(normℎ‘(𝑆‘(𝑡 +ℎ ℎ))) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ))))) |
58 | 53, 57 | syl5ibrcom 250 |
. . . . . . . . . . . 12
⊢ ((((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) ∧
((normℎ‘𝑡) + (normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) ∧ ((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝑣 ∈ ℝ)) → (𝑢 = (𝑡 +ℎ ℎ) → (normℎ‘(𝑆‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢)))) |
59 | 58 | exp31 423 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) →
(((normℎ‘𝑡) + (normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ))) → (((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝑣 ∈ ℝ) → (𝑢 = (𝑡 +ℎ ℎ) → (normℎ‘(𝑆‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢)))))) |
60 | 17, 59 | syld 47 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) → (((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝑣 ∈ ℝ) → (𝑢 = (𝑡 +ℎ ℎ) → (normℎ‘(𝑆‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢)))))) |
61 | 60 | com14 96 |
. . . . . . . . 9
⊢ (𝑢 = (𝑡 +ℎ ℎ) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) → (((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝑣 ∈ ℝ) → ((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) →
(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢)))))) |
62 | 61 | com4t 93 |
. . . . . . . 8
⊢ (((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝑣 ∈ ℝ) → ((𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (𝑢 = (𝑡 +ℎ ℎ) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) →
(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢)))))) |
63 | 62 | rexlimdvv 3212 |
. . . . . . 7
⊢ (((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝑣 ∈ ℝ) →
(∃𝑡 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑢 = (𝑡 +ℎ ℎ) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) →
(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢))))) |
64 | 5, 63 | syl5com 31 |
. . . . . 6
⊢ (𝑢 ∈ (𝐴 +ℋ 𝐵) → (((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝑣 ∈ ℝ) →
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) →
(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢))))) |
65 | 64 | com3l 89 |
. . . . 5
⊢ (((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝑣 ∈ ℝ) →
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) → (𝑢 ∈ (𝐴 +ℋ 𝐵) →
(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢))))) |
66 | 65 | ralrimdv 3109 |
. . . 4
⊢ (((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝑣 ∈ ℝ) →
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) → ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢)))) |
67 | 66 | anim2d 615 |
. . 3
⊢ (((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝑣 ∈ ℝ) → ((0 <
𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦)))) → (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢))))) |
68 | 67 | reximdva 3193 |
. 2
⊢ ((𝐴 ∩ 𝐵) = 0ℋ → (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢))))) |
69 | 3, 68 | mpcom 38 |
1
⊢
(∃𝑣 ∈
ℝ (0 < 𝑣 ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢)))) |