HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem2b Structured version   Visualization version   GIF version

Theorem cdj3lem2b 31379
Description: Lemma for cdj3i 31383. The first-component function 𝑆 is bounded if the subspaces are completely disjoint. (Contributed by NM, 26-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem2.3 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem2b (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑢   𝑣,𝑆,𝑢
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cdj3lem2b
Dummy variables 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdj3lem2.1 . . 3 𝐴S
2 cdj3lem2.2 . . 3 𝐵S
31, 2cdj3lem1 31376 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → (𝐴𝐵) = 0)
41, 2shseli 30258 . . . . . . . 8 (𝑢 ∈ (𝐴 + 𝐵) ↔ ∃𝑡𝐴𝐵 𝑢 = (𝑡 + ))
54biimpi 215 . . . . . . 7 (𝑢 ∈ (𝐴 + 𝐵) → ∃𝑡𝐴𝐵 𝑢 = (𝑡 + ))
6 fveq2 6842 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (norm𝑥) = (norm𝑡))
76oveq1d 7372 . . . . . . . . . . . . 13 (𝑥 = 𝑡 → ((norm𝑥) + (norm𝑦)) = ((norm𝑡) + (norm𝑦)))
8 fvoveq1 7380 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (norm‘(𝑥 + 𝑦)) = (norm‘(𝑡 + 𝑦)))
98oveq2d 7373 . . . . . . . . . . . . 13 (𝑥 = 𝑡 → (𝑣 · (norm‘(𝑥 + 𝑦))) = (𝑣 · (norm‘(𝑡 + 𝑦))))
107, 9breq12d 5118 . . . . . . . . . . . 12 (𝑥 = 𝑡 → (((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦)))))
11 fveq2 6842 . . . . . . . . . . . . . 14 (𝑦 = → (norm𝑦) = (norm))
1211oveq2d 7373 . . . . . . . . . . . . 13 (𝑦 = → ((norm𝑡) + (norm𝑦)) = ((norm𝑡) + (norm)))
13 oveq2 7365 . . . . . . . . . . . . . . 15 (𝑦 = → (𝑡 + 𝑦) = (𝑡 + ))
1413fveq2d 6846 . . . . . . . . . . . . . 14 (𝑦 = → (norm‘(𝑡 + 𝑦)) = (norm‘(𝑡 + )))
1514oveq2d 7373 . . . . . . . . . . . . 13 (𝑦 = → (𝑣 · (norm‘(𝑡 + 𝑦))) = (𝑣 · (norm‘(𝑡 + ))))
1612, 15breq12d 5118 . . . . . . . . . . . 12 (𝑦 = → (((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦))) ↔ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))))
1710, 16rspc2v 3590 . . . . . . . . . . 11 ((𝑡𝐴𝐵) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))))
18 cdj3lem2.3 . . . . . . . . . . . . . . . . . 18 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
191, 2, 18cdj3lem2 31377 . . . . . . . . . . . . . . . . 17 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝑡 + )) = 𝑡)
20193expa 1118 . . . . . . . . . . . . . . . 16 (((𝑡𝐴𝐵) ∧ (𝐴𝐵) = 0) → (𝑆‘(𝑡 + )) = 𝑡)
2120fveq2d 6846 . . . . . . . . . . . . . . 15 (((𝑡𝐴𝐵) ∧ (𝐴𝐵) = 0) → (norm‘(𝑆‘(𝑡 + ))) = (norm𝑡))
2221ad2ant2r 745 . . . . . . . . . . . . . 14 ((((𝑡𝐴𝐵) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) ∧ ((𝐴𝐵) = 0𝑣 ∈ ℝ)) → (norm‘(𝑆‘(𝑡 + ))) = (norm𝑡))
232sheli 30156 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℋ)
24 normge0 30068 . . . . . . . . . . . . . . . . . . . . . 22 ( ∈ ℋ → 0 ≤ (norm))
2523, 24syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 → 0 ≤ (norm))
2625adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑡𝐴𝐵) → 0 ≤ (norm))
271sheli 30156 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡𝐴𝑡 ∈ ℋ)
28 normcl 30067 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℋ → (norm𝑡) ∈ ℝ)
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑡𝐴 → (norm𝑡) ∈ ℝ)
30 normcl 30067 . . . . . . . . . . . . . . . . . . . . . 22 ( ∈ ℋ → (norm) ∈ ℝ)
3123, 30syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 → (norm) ∈ ℝ)
32 addge01 11665 . . . . . . . . . . . . . . . . . . . . 21 (((norm𝑡) ∈ ℝ ∧ (norm) ∈ ℝ) → (0 ≤ (norm) ↔ (norm𝑡) ≤ ((norm𝑡) + (norm))))
3329, 31, 32syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝑡𝐴𝐵) → (0 ≤ (norm) ↔ (norm𝑡) ≤ ((norm𝑡) + (norm))))
3426, 33mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((𝑡𝐴𝐵) → (norm𝑡) ≤ ((norm𝑡) + (norm)))
3534adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → (norm𝑡) ≤ ((norm𝑡) + (norm)))
3629ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → (norm𝑡) ∈ ℝ)
37 readdcl 11134 . . . . . . . . . . . . . . . . . . . . 21 (((norm𝑡) ∈ ℝ ∧ (norm) ∈ ℝ) → ((norm𝑡) + (norm)) ∈ ℝ)
3829, 31, 37syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝑡𝐴𝐵) → ((norm𝑡) + (norm)) ∈ ℝ)
3938adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → ((norm𝑡) + (norm)) ∈ ℝ)
40 hvaddcl 29954 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ ℋ ∧ ∈ ℋ) → (𝑡 + ) ∈ ℋ)
4127, 23, 40syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡𝐴𝐵) → (𝑡 + ) ∈ ℋ)
42 normcl 30067 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 + ) ∈ ℋ → (norm‘(𝑡 + )) ∈ ℝ)
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡𝐴𝐵) → (norm‘(𝑡 + )) ∈ ℝ)
44 remulcl 11136 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ ℝ ∧ (norm‘(𝑡 + )) ∈ ℝ) → (𝑣 · (norm‘(𝑡 + ))) ∈ ℝ)
4543, 44sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ℝ ∧ (𝑡𝐴𝐵)) → (𝑣 · (norm‘(𝑡 + ))) ∈ ℝ)
4645ancoms 459 . . . . . . . . . . . . . . . . . . 19 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → (𝑣 · (norm‘(𝑡 + ))) ∈ ℝ)
47 letr 11249 . . . . . . . . . . . . . . . . . . 19 (((norm𝑡) ∈ ℝ ∧ ((norm𝑡) + (norm)) ∈ ℝ ∧ (𝑣 · (norm‘(𝑡 + ))) ∈ ℝ) → (((norm𝑡) ≤ ((norm𝑡) + (norm)) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + )))))
4836, 39, 46, 47syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → (((norm𝑡) ≤ ((norm𝑡) + (norm)) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + )))))
4935, 48mpand 693 . . . . . . . . . . . . . . . . 17 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → (((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + )))))
5049imp 407 . . . . . . . . . . . . . . . 16 ((((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + ))))
5150an32s 650 . . . . . . . . . . . . . . 15 ((((𝑡𝐴𝐵) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) ∧ 𝑣 ∈ ℝ) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + ))))
5251adantrl 714 . . . . . . . . . . . . . 14 ((((𝑡𝐴𝐵) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) ∧ ((𝐴𝐵) = 0𝑣 ∈ ℝ)) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + ))))
5322, 52eqbrtrd 5127 . . . . . . . . . . . . 13 ((((𝑡𝐴𝐵) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) ∧ ((𝐴𝐵) = 0𝑣 ∈ ℝ)) → (norm‘(𝑆‘(𝑡 + ))) ≤ (𝑣 · (norm‘(𝑡 + ))))
54 2fveq3 6847 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (norm‘(𝑆𝑢)) = (norm‘(𝑆‘(𝑡 + ))))
55 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑢 = (𝑡 + ) → (norm𝑢) = (norm‘(𝑡 + )))
5655oveq2d 7373 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (𝑣 · (norm𝑢)) = (𝑣 · (norm‘(𝑡 + ))))
5754, 56breq12d 5118 . . . . . . . . . . . . 13 (𝑢 = (𝑡 + ) → ((norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ (norm‘(𝑆‘(𝑡 + ))) ≤ (𝑣 · (norm‘(𝑡 + )))))
5853, 57syl5ibrcom 246 . . . . . . . . . . . 12 ((((𝑡𝐴𝐵) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) ∧ ((𝐴𝐵) = 0𝑣 ∈ ℝ)) → (𝑢 = (𝑡 + ) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
5958exp31 420 . . . . . . . . . . 11 ((𝑡𝐴𝐵) → (((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) → (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (𝑢 = (𝑡 + ) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))))
6017, 59syld 47 . . . . . . . . . 10 ((𝑡𝐴𝐵) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (𝑢 = (𝑡 + ) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))))
6160com14 96 . . . . . . . . 9 (𝑢 = (𝑡 + ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (((𝐴𝐵) = 0𝑣 ∈ ℝ) → ((𝑡𝐴𝐵) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))))
6261com4t 93 . . . . . . . 8 (((𝐴𝐵) = 0𝑣 ∈ ℝ) → ((𝑡𝐴𝐵) → (𝑢 = (𝑡 + ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))))
6362rexlimdvv 3204 . . . . . . 7 (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (∃𝑡𝐴𝐵 𝑢 = (𝑡 + ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)))))
645, 63syl5com 31 . . . . . 6 (𝑢 ∈ (𝐴 + 𝐵) → (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)))))
6564com3l 89 . . . . 5 (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (𝑢 ∈ (𝐴 + 𝐵) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)))))
6665ralrimdv 3149 . . . 4 (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
6766anim2d 612 . . 3 (((𝐴𝐵) = 0𝑣 ∈ ℝ) → ((0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)))))
6867reximdva 3165 . 2 ((𝐴𝐵) = 0 → (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)))))
693, 68mpcom 38 1 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  cin 3909   class class class wbr 5105  cmpt 5188  cfv 6496  crio 7312  (class class class)co 7357  cr 11050  0cc0 11051   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  chba 29861   + cva 29862  normcno 29865   S csh 29870   + cph 29873  0c0h 29877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-hilex 29941  ax-hfvadd 29942  ax-hvcom 29943  ax-hvass 29944  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvmulass 29949  ax-hvdistr1 29950  ax-hvdistr2 29951  ax-hvmul0 29952  ax-hfi 30021  ax-his1 30024  ax-his3 30026  ax-his4 30027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-grpo 29435  df-ablo 29487  df-hnorm 29910  df-hvsub 29913  df-sh 30149  df-ch0 30195  df-shs 30250
This theorem is referenced by:  cdj3lem3b  31382  cdj3i  31383
  Copyright terms: Public domain W3C validator