HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem2b Structured version   Visualization version   GIF version

Theorem cdj3lem2b 32373
Description: Lemma for cdj3i 32377. The first-component function 𝑆 is bounded if the subspaces are completely disjoint. (Contributed by NM, 26-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem2.3 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem2b (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑢   𝑣,𝑆,𝑢
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cdj3lem2b
Dummy variables 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdj3lem2.1 . . 3 𝐴S
2 cdj3lem2.2 . . 3 𝐵S
31, 2cdj3lem1 32370 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → (𝐴𝐵) = 0)
41, 2shseli 31252 . . . . . . . 8 (𝑢 ∈ (𝐴 + 𝐵) ↔ ∃𝑡𝐴𝐵 𝑢 = (𝑡 + ))
54biimpi 216 . . . . . . 7 (𝑢 ∈ (𝐴 + 𝐵) → ∃𝑡𝐴𝐵 𝑢 = (𝑡 + ))
6 fveq2 6861 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (norm𝑥) = (norm𝑡))
76oveq1d 7405 . . . . . . . . . . . . 13 (𝑥 = 𝑡 → ((norm𝑥) + (norm𝑦)) = ((norm𝑡) + (norm𝑦)))
8 fvoveq1 7413 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (norm‘(𝑥 + 𝑦)) = (norm‘(𝑡 + 𝑦)))
98oveq2d 7406 . . . . . . . . . . . . 13 (𝑥 = 𝑡 → (𝑣 · (norm‘(𝑥 + 𝑦))) = (𝑣 · (norm‘(𝑡 + 𝑦))))
107, 9breq12d 5123 . . . . . . . . . . . 12 (𝑥 = 𝑡 → (((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦)))))
11 fveq2 6861 . . . . . . . . . . . . . 14 (𝑦 = → (norm𝑦) = (norm))
1211oveq2d 7406 . . . . . . . . . . . . 13 (𝑦 = → ((norm𝑡) + (norm𝑦)) = ((norm𝑡) + (norm)))
13 oveq2 7398 . . . . . . . . . . . . . . 15 (𝑦 = → (𝑡 + 𝑦) = (𝑡 + ))
1413fveq2d 6865 . . . . . . . . . . . . . 14 (𝑦 = → (norm‘(𝑡 + 𝑦)) = (norm‘(𝑡 + )))
1514oveq2d 7406 . . . . . . . . . . . . 13 (𝑦 = → (𝑣 · (norm‘(𝑡 + 𝑦))) = (𝑣 · (norm‘(𝑡 + ))))
1612, 15breq12d 5123 . . . . . . . . . . . 12 (𝑦 = → (((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦))) ↔ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))))
1710, 16rspc2v 3602 . . . . . . . . . . 11 ((𝑡𝐴𝐵) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))))
18 cdj3lem2.3 . . . . . . . . . . . . . . . . . 18 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
191, 2, 18cdj3lem2 32371 . . . . . . . . . . . . . . . . 17 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝑡 + )) = 𝑡)
20193expa 1118 . . . . . . . . . . . . . . . 16 (((𝑡𝐴𝐵) ∧ (𝐴𝐵) = 0) → (𝑆‘(𝑡 + )) = 𝑡)
2120fveq2d 6865 . . . . . . . . . . . . . . 15 (((𝑡𝐴𝐵) ∧ (𝐴𝐵) = 0) → (norm‘(𝑆‘(𝑡 + ))) = (norm𝑡))
2221ad2ant2r 747 . . . . . . . . . . . . . 14 ((((𝑡𝐴𝐵) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) ∧ ((𝐴𝐵) = 0𝑣 ∈ ℝ)) → (norm‘(𝑆‘(𝑡 + ))) = (norm𝑡))
232sheli 31150 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℋ)
24 normge0 31062 . . . . . . . . . . . . . . . . . . . . . 22 ( ∈ ℋ → 0 ≤ (norm))
2523, 24syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 → 0 ≤ (norm))
2625adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑡𝐴𝐵) → 0 ≤ (norm))
271sheli 31150 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡𝐴𝑡 ∈ ℋ)
28 normcl 31061 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℋ → (norm𝑡) ∈ ℝ)
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑡𝐴 → (norm𝑡) ∈ ℝ)
30 normcl 31061 . . . . . . . . . . . . . . . . . . . . . 22 ( ∈ ℋ → (norm) ∈ ℝ)
3123, 30syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 → (norm) ∈ ℝ)
32 addge01 11695 . . . . . . . . . . . . . . . . . . . . 21 (((norm𝑡) ∈ ℝ ∧ (norm) ∈ ℝ) → (0 ≤ (norm) ↔ (norm𝑡) ≤ ((norm𝑡) + (norm))))
3329, 31, 32syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝑡𝐴𝐵) → (0 ≤ (norm) ↔ (norm𝑡) ≤ ((norm𝑡) + (norm))))
3426, 33mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝑡𝐴𝐵) → (norm𝑡) ≤ ((norm𝑡) + (norm)))
3534adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → (norm𝑡) ≤ ((norm𝑡) + (norm)))
3629ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → (norm𝑡) ∈ ℝ)
37 readdcl 11158 . . . . . . . . . . . . . . . . . . . . 21 (((norm𝑡) ∈ ℝ ∧ (norm) ∈ ℝ) → ((norm𝑡) + (norm)) ∈ ℝ)
3829, 31, 37syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝑡𝐴𝐵) → ((norm𝑡) + (norm)) ∈ ℝ)
3938adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → ((norm𝑡) + (norm)) ∈ ℝ)
40 hvaddcl 30948 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ ℋ ∧ ∈ ℋ) → (𝑡 + ) ∈ ℋ)
4127, 23, 40syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡𝐴𝐵) → (𝑡 + ) ∈ ℋ)
42 normcl 31061 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 + ) ∈ ℋ → (norm‘(𝑡 + )) ∈ ℝ)
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡𝐴𝐵) → (norm‘(𝑡 + )) ∈ ℝ)
44 remulcl 11160 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ ℝ ∧ (norm‘(𝑡 + )) ∈ ℝ) → (𝑣 · (norm‘(𝑡 + ))) ∈ ℝ)
4543, 44sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ℝ ∧ (𝑡𝐴𝐵)) → (𝑣 · (norm‘(𝑡 + ))) ∈ ℝ)
4645ancoms 458 . . . . . . . . . . . . . . . . . . 19 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → (𝑣 · (norm‘(𝑡 + ))) ∈ ℝ)
47 letr 11275 . . . . . . . . . . . . . . . . . . 19 (((norm𝑡) ∈ ℝ ∧ ((norm𝑡) + (norm)) ∈ ℝ ∧ (𝑣 · (norm‘(𝑡 + ))) ∈ ℝ) → (((norm𝑡) ≤ ((norm𝑡) + (norm)) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + )))))
4836, 39, 46, 47syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → (((norm𝑡) ≤ ((norm𝑡) + (norm)) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + )))))
4935, 48mpand 695 . . . . . . . . . . . . . . . . 17 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → (((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + )))))
5049imp 406 . . . . . . . . . . . . . . . 16 ((((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + ))))
5150an32s 652 . . . . . . . . . . . . . . 15 ((((𝑡𝐴𝐵) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) ∧ 𝑣 ∈ ℝ) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + ))))
5251adantrl 716 . . . . . . . . . . . . . 14 ((((𝑡𝐴𝐵) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) ∧ ((𝐴𝐵) = 0𝑣 ∈ ℝ)) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + ))))
5322, 52eqbrtrd 5132 . . . . . . . . . . . . 13 ((((𝑡𝐴𝐵) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) ∧ ((𝐴𝐵) = 0𝑣 ∈ ℝ)) → (norm‘(𝑆‘(𝑡 + ))) ≤ (𝑣 · (norm‘(𝑡 + ))))
54 2fveq3 6866 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (norm‘(𝑆𝑢)) = (norm‘(𝑆‘(𝑡 + ))))
55 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑢 = (𝑡 + ) → (norm𝑢) = (norm‘(𝑡 + )))
5655oveq2d 7406 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (𝑣 · (norm𝑢)) = (𝑣 · (norm‘(𝑡 + ))))
5754, 56breq12d 5123 . . . . . . . . . . . . 13 (𝑢 = (𝑡 + ) → ((norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ (norm‘(𝑆‘(𝑡 + ))) ≤ (𝑣 · (norm‘(𝑡 + )))))
5853, 57syl5ibrcom 247 . . . . . . . . . . . 12 ((((𝑡𝐴𝐵) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) ∧ ((𝐴𝐵) = 0𝑣 ∈ ℝ)) → (𝑢 = (𝑡 + ) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
5958exp31 419 . . . . . . . . . . 11 ((𝑡𝐴𝐵) → (((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) → (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (𝑢 = (𝑡 + ) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))))
6017, 59syld 47 . . . . . . . . . 10 ((𝑡𝐴𝐵) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (𝑢 = (𝑡 + ) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))))
6160com14 96 . . . . . . . . 9 (𝑢 = (𝑡 + ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (((𝐴𝐵) = 0𝑣 ∈ ℝ) → ((𝑡𝐴𝐵) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))))
6261com4t 93 . . . . . . . 8 (((𝐴𝐵) = 0𝑣 ∈ ℝ) → ((𝑡𝐴𝐵) → (𝑢 = (𝑡 + ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))))
6362rexlimdvv 3194 . . . . . . 7 (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (∃𝑡𝐴𝐵 𝑢 = (𝑡 + ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)))))
645, 63syl5com 31 . . . . . 6 (𝑢 ∈ (𝐴 + 𝐵) → (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)))))
6564com3l 89 . . . . 5 (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (𝑢 ∈ (𝐴 + 𝐵) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)))))
6665ralrimdv 3132 . . . 4 (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
6766anim2d 612 . . 3 (((𝐴𝐵) = 0𝑣 ∈ ℝ) → ((0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)))))
6867reximdva 3147 . 2 ((𝐴𝐵) = 0 → (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)))))
693, 68mpcom 38 1 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cin 3916   class class class wbr 5110  cmpt 5191  cfv 6514  crio 7346  (class class class)co 7390  cr 11074  0cc0 11075   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  chba 30855   + cva 30856  normcno 30859   S csh 30864   + cph 30867  0c0h 30871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-hilex 30935  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvmulass 30943  ax-hvdistr1 30944  ax-hvdistr2 30945  ax-hvmul0 30946  ax-hfi 31015  ax-his1 31018  ax-his3 31020  ax-his4 31021
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-grpo 30429  df-ablo 30481  df-hnorm 30904  df-hvsub 30907  df-sh 31143  df-ch0 31189  df-shs 31244
This theorem is referenced by:  cdj3lem3b  32376  cdj3i  32377
  Copyright terms: Public domain W3C validator