HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem2b Structured version   Visualization version   GIF version

Theorem cdj3lem2b 32381
Description: Lemma for cdj3i 32385. The first-component function 𝑆 is bounded if the subspaces are completely disjoint. (Contributed by NM, 26-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem2.3 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem2b (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑢   𝑣,𝑆,𝑢
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cdj3lem2b
Dummy variables 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdj3lem2.1 . . 3 𝐴S
2 cdj3lem2.2 . . 3 𝐵S
31, 2cdj3lem1 32378 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → (𝐴𝐵) = 0)
41, 2shseli 31260 . . . . . . . 8 (𝑢 ∈ (𝐴 + 𝐵) ↔ ∃𝑡𝐴𝐵 𝑢 = (𝑡 + ))
54biimpi 216 . . . . . . 7 (𝑢 ∈ (𝐴 + 𝐵) → ∃𝑡𝐴𝐵 𝑢 = (𝑡 + ))
6 fveq2 6822 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (norm𝑥) = (norm𝑡))
76oveq1d 7364 . . . . . . . . . . . . 13 (𝑥 = 𝑡 → ((norm𝑥) + (norm𝑦)) = ((norm𝑡) + (norm𝑦)))
8 fvoveq1 7372 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (norm‘(𝑥 + 𝑦)) = (norm‘(𝑡 + 𝑦)))
98oveq2d 7365 . . . . . . . . . . . . 13 (𝑥 = 𝑡 → (𝑣 · (norm‘(𝑥 + 𝑦))) = (𝑣 · (norm‘(𝑡 + 𝑦))))
107, 9breq12d 5105 . . . . . . . . . . . 12 (𝑥 = 𝑡 → (((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦)))))
11 fveq2 6822 . . . . . . . . . . . . . 14 (𝑦 = → (norm𝑦) = (norm))
1211oveq2d 7365 . . . . . . . . . . . . 13 (𝑦 = → ((norm𝑡) + (norm𝑦)) = ((norm𝑡) + (norm)))
13 oveq2 7357 . . . . . . . . . . . . . . 15 (𝑦 = → (𝑡 + 𝑦) = (𝑡 + ))
1413fveq2d 6826 . . . . . . . . . . . . . 14 (𝑦 = → (norm‘(𝑡 + 𝑦)) = (norm‘(𝑡 + )))
1514oveq2d 7365 . . . . . . . . . . . . 13 (𝑦 = → (𝑣 · (norm‘(𝑡 + 𝑦))) = (𝑣 · (norm‘(𝑡 + ))))
1612, 15breq12d 5105 . . . . . . . . . . . 12 (𝑦 = → (((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦))) ↔ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))))
1710, 16rspc2v 3588 . . . . . . . . . . 11 ((𝑡𝐴𝐵) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))))
18 cdj3lem2.3 . . . . . . . . . . . . . . . . . 18 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
191, 2, 18cdj3lem2 32379 . . . . . . . . . . . . . . . . 17 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝑡 + )) = 𝑡)
20193expa 1118 . . . . . . . . . . . . . . . 16 (((𝑡𝐴𝐵) ∧ (𝐴𝐵) = 0) → (𝑆‘(𝑡 + )) = 𝑡)
2120fveq2d 6826 . . . . . . . . . . . . . . 15 (((𝑡𝐴𝐵) ∧ (𝐴𝐵) = 0) → (norm‘(𝑆‘(𝑡 + ))) = (norm𝑡))
2221ad2ant2r 747 . . . . . . . . . . . . . 14 ((((𝑡𝐴𝐵) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) ∧ ((𝐴𝐵) = 0𝑣 ∈ ℝ)) → (norm‘(𝑆‘(𝑡 + ))) = (norm𝑡))
232sheli 31158 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℋ)
24 normge0 31070 . . . . . . . . . . . . . . . . . . . . . 22 ( ∈ ℋ → 0 ≤ (norm))
2523, 24syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 → 0 ≤ (norm))
2625adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑡𝐴𝐵) → 0 ≤ (norm))
271sheli 31158 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡𝐴𝑡 ∈ ℋ)
28 normcl 31069 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℋ → (norm𝑡) ∈ ℝ)
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑡𝐴 → (norm𝑡) ∈ ℝ)
30 normcl 31069 . . . . . . . . . . . . . . . . . . . . . 22 ( ∈ ℋ → (norm) ∈ ℝ)
3123, 30syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 → (norm) ∈ ℝ)
32 addge01 11630 . . . . . . . . . . . . . . . . . . . . 21 (((norm𝑡) ∈ ℝ ∧ (norm) ∈ ℝ) → (0 ≤ (norm) ↔ (norm𝑡) ≤ ((norm𝑡) + (norm))))
3329, 31, 32syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝑡𝐴𝐵) → (0 ≤ (norm) ↔ (norm𝑡) ≤ ((norm𝑡) + (norm))))
3426, 33mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝑡𝐴𝐵) → (norm𝑡) ≤ ((norm𝑡) + (norm)))
3534adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → (norm𝑡) ≤ ((norm𝑡) + (norm)))
3629ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → (norm𝑡) ∈ ℝ)
37 readdcl 11092 . . . . . . . . . . . . . . . . . . . . 21 (((norm𝑡) ∈ ℝ ∧ (norm) ∈ ℝ) → ((norm𝑡) + (norm)) ∈ ℝ)
3829, 31, 37syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝑡𝐴𝐵) → ((norm𝑡) + (norm)) ∈ ℝ)
3938adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → ((norm𝑡) + (norm)) ∈ ℝ)
40 hvaddcl 30956 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ ℋ ∧ ∈ ℋ) → (𝑡 + ) ∈ ℋ)
4127, 23, 40syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡𝐴𝐵) → (𝑡 + ) ∈ ℋ)
42 normcl 31069 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 + ) ∈ ℋ → (norm‘(𝑡 + )) ∈ ℝ)
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡𝐴𝐵) → (norm‘(𝑡 + )) ∈ ℝ)
44 remulcl 11094 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ ℝ ∧ (norm‘(𝑡 + )) ∈ ℝ) → (𝑣 · (norm‘(𝑡 + ))) ∈ ℝ)
4543, 44sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ℝ ∧ (𝑡𝐴𝐵)) → (𝑣 · (norm‘(𝑡 + ))) ∈ ℝ)
4645ancoms 458 . . . . . . . . . . . . . . . . . . 19 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → (𝑣 · (norm‘(𝑡 + ))) ∈ ℝ)
47 letr 11210 . . . . . . . . . . . . . . . . . . 19 (((norm𝑡) ∈ ℝ ∧ ((norm𝑡) + (norm)) ∈ ℝ ∧ (𝑣 · (norm‘(𝑡 + ))) ∈ ℝ) → (((norm𝑡) ≤ ((norm𝑡) + (norm)) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + )))))
4836, 39, 46, 47syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → (((norm𝑡) ≤ ((norm𝑡) + (norm)) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + )))))
4935, 48mpand 695 . . . . . . . . . . . . . . . . 17 (((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) → (((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + )))))
5049imp 406 . . . . . . . . . . . . . . . 16 ((((𝑡𝐴𝐵) ∧ 𝑣 ∈ ℝ) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + ))))
5150an32s 652 . . . . . . . . . . . . . . 15 ((((𝑡𝐴𝐵) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) ∧ 𝑣 ∈ ℝ) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + ))))
5251adantrl 716 . . . . . . . . . . . . . 14 ((((𝑡𝐴𝐵) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) ∧ ((𝐴𝐵) = 0𝑣 ∈ ℝ)) → (norm𝑡) ≤ (𝑣 · (norm‘(𝑡 + ))))
5322, 52eqbrtrd 5114 . . . . . . . . . . . . 13 ((((𝑡𝐴𝐵) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) ∧ ((𝐴𝐵) = 0𝑣 ∈ ℝ)) → (norm‘(𝑆‘(𝑡 + ))) ≤ (𝑣 · (norm‘(𝑡 + ))))
54 2fveq3 6827 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (norm‘(𝑆𝑢)) = (norm‘(𝑆‘(𝑡 + ))))
55 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑢 = (𝑡 + ) → (norm𝑢) = (norm‘(𝑡 + )))
5655oveq2d 7365 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (𝑣 · (norm𝑢)) = (𝑣 · (norm‘(𝑡 + ))))
5754, 56breq12d 5105 . . . . . . . . . . . . 13 (𝑢 = (𝑡 + ) → ((norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ (norm‘(𝑆‘(𝑡 + ))) ≤ (𝑣 · (norm‘(𝑡 + )))))
5853, 57syl5ibrcom 247 . . . . . . . . . . . 12 ((((𝑡𝐴𝐵) ∧ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))) ∧ ((𝐴𝐵) = 0𝑣 ∈ ℝ)) → (𝑢 = (𝑡 + ) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
5958exp31 419 . . . . . . . . . . 11 ((𝑡𝐴𝐵) → (((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) → (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (𝑢 = (𝑡 + ) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))))
6017, 59syld 47 . . . . . . . . . 10 ((𝑡𝐴𝐵) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (𝑢 = (𝑡 + ) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))))
6160com14 96 . . . . . . . . 9 (𝑢 = (𝑡 + ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (((𝐴𝐵) = 0𝑣 ∈ ℝ) → ((𝑡𝐴𝐵) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))))
6261com4t 93 . . . . . . . 8 (((𝐴𝐵) = 0𝑣 ∈ ℝ) → ((𝑡𝐴𝐵) → (𝑢 = (𝑡 + ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))))
6362rexlimdvv 3185 . . . . . . 7 (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (∃𝑡𝐴𝐵 𝑢 = (𝑡 + ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)))))
645, 63syl5com 31 . . . . . 6 (𝑢 ∈ (𝐴 + 𝐵) → (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)))))
6564com3l 89 . . . . 5 (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → (𝑢 ∈ (𝐴 + 𝐵) → (norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)))))
6665ralrimdv 3127 . . . 4 (((𝐴𝐵) = 0𝑣 ∈ ℝ) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) → ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
6766anim2d 612 . . 3 (((𝐴𝐵) = 0𝑣 ∈ ℝ) → ((0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)))))
6867reximdva 3142 . 2 ((𝐴𝐵) = 0 → (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)))))
693, 68mpcom 38 1 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3902   class class class wbr 5092  cmpt 5173  cfv 6482  crio 7305  (class class class)co 7349  cr 11008  0cc0 11009   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  chba 30863   + cva 30864  normcno 30867   S csh 30872   + cph 30875  0c0h 30879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hvass 30946  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvmulass 30951  ax-hvdistr1 30952  ax-hvdistr2 30953  ax-hvmul0 30954  ax-hfi 31023  ax-his1 31026  ax-his3 31028  ax-his4 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-grpo 30437  df-ablo 30489  df-hnorm 30912  df-hvsub 30915  df-sh 31151  df-ch0 31197  df-shs 31252
This theorem is referenced by:  cdj3lem3b  32384  cdj3i  32385
  Copyright terms: Public domain W3C validator