MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofrlem Structured version   Visualization version   GIF version

Theorem isofrlem 7211
Description: Lemma for isofr 7213. (Contributed by NM, 29-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
isofrlem.1 (𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
isofrlem.2 (𝜑 → (𝐻𝑥) ∈ V)
Assertion
Ref Expression
isofrlem (𝜑 → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐻   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆

Proof of Theorem isofrlem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isofrlem.1 . . . . . . 7 (𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 isof1o 7194 . . . . . . 7 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
31, 2syl 17 . . . . . 6 (𝜑𝐻:𝐴1-1-onto𝐵)
4 f1ofn 6717 . . . . . . . 8 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
5 n0 4280 . . . . . . . . . 10 (𝑥 ≠ ∅ ↔ ∃𝑦 𝑦𝑥)
6 fnfvima 7109 . . . . . . . . . . . . 13 ((𝐻 Fn 𝐴𝑥𝐴𝑦𝑥) → (𝐻𝑦) ∈ (𝐻𝑥))
76ne0d 4269 . . . . . . . . . . . 12 ((𝐻 Fn 𝐴𝑥𝐴𝑦𝑥) → (𝐻𝑥) ≠ ∅)
873expia 1120 . . . . . . . . . . 11 ((𝐻 Fn 𝐴𝑥𝐴) → (𝑦𝑥 → (𝐻𝑥) ≠ ∅))
98exlimdv 1936 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝑥𝐴) → (∃𝑦 𝑦𝑥 → (𝐻𝑥) ≠ ∅))
105, 9syl5bi 241 . . . . . . . . 9 ((𝐻 Fn 𝐴𝑥𝐴) → (𝑥 ≠ ∅ → (𝐻𝑥) ≠ ∅))
1110expimpd 454 . . . . . . . 8 (𝐻 Fn 𝐴 → ((𝑥𝐴𝑥 ≠ ∅) → (𝐻𝑥) ≠ ∅))
124, 11syl 17 . . . . . . 7 (𝐻:𝐴1-1-onto𝐵 → ((𝑥𝐴𝑥 ≠ ∅) → (𝐻𝑥) ≠ ∅))
13 f1ofo 6723 . . . . . . . 8 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴onto𝐵)
14 imassrn 5980 . . . . . . . . 9 (𝐻𝑥) ⊆ ran 𝐻
15 forn 6691 . . . . . . . . 9 (𝐻:𝐴onto𝐵 → ran 𝐻 = 𝐵)
1614, 15sseqtrid 3973 . . . . . . . 8 (𝐻:𝐴onto𝐵 → (𝐻𝑥) ⊆ 𝐵)
1713, 16syl 17 . . . . . . 7 (𝐻:𝐴1-1-onto𝐵 → (𝐻𝑥) ⊆ 𝐵)
1812, 17jctild 526 . . . . . 6 (𝐻:𝐴1-1-onto𝐵 → ((𝑥𝐴𝑥 ≠ ∅) → ((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅)))
193, 18syl 17 . . . . 5 (𝜑 → ((𝑥𝐴𝑥 ≠ ∅) → ((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅)))
20 dffr3 6007 . . . . . 6 (𝑆 Fr 𝐵 ↔ ∀𝑧((𝑧𝐵𝑧 ≠ ∅) → ∃𝑤𝑧 (𝑧 ∩ (𝑆 “ {𝑤})) = ∅))
21 isofrlem.2 . . . . . . 7 (𝜑 → (𝐻𝑥) ∈ V)
22 sseq1 3946 . . . . . . . . . 10 (𝑧 = (𝐻𝑥) → (𝑧𝐵 ↔ (𝐻𝑥) ⊆ 𝐵))
23 neeq1 3006 . . . . . . . . . 10 (𝑧 = (𝐻𝑥) → (𝑧 ≠ ∅ ↔ (𝐻𝑥) ≠ ∅))
2422, 23anbi12d 631 . . . . . . . . 9 (𝑧 = (𝐻𝑥) → ((𝑧𝐵𝑧 ≠ ∅) ↔ ((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅)))
25 ineq1 4139 . . . . . . . . . . 11 (𝑧 = (𝐻𝑥) → (𝑧 ∩ (𝑆 “ {𝑤})) = ((𝐻𝑥) ∩ (𝑆 “ {𝑤})))
2625eqeq1d 2740 . . . . . . . . . 10 (𝑧 = (𝐻𝑥) → ((𝑧 ∩ (𝑆 “ {𝑤})) = ∅ ↔ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅))
2726rexeqbi1dv 3341 . . . . . . . . 9 (𝑧 = (𝐻𝑥) → (∃𝑤𝑧 (𝑧 ∩ (𝑆 “ {𝑤})) = ∅ ↔ ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅))
2824, 27imbi12d 345 . . . . . . . 8 (𝑧 = (𝐻𝑥) → (((𝑧𝐵𝑧 ≠ ∅) → ∃𝑤𝑧 (𝑧 ∩ (𝑆 “ {𝑤})) = ∅) ↔ (((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)))
2928spcgv 3535 . . . . . . 7 ((𝐻𝑥) ∈ V → (∀𝑧((𝑧𝐵𝑧 ≠ ∅) → ∃𝑤𝑧 (𝑧 ∩ (𝑆 “ {𝑤})) = ∅) → (((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)))
3021, 29syl 17 . . . . . 6 (𝜑 → (∀𝑧((𝑧𝐵𝑧 ≠ ∅) → ∃𝑤𝑧 (𝑧 ∩ (𝑆 “ {𝑤})) = ∅) → (((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)))
3120, 30syl5bi 241 . . . . 5 (𝜑 → (𝑆 Fr 𝐵 → (((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)))
3219, 31syl5d 73 . . . 4 (𝜑 → (𝑆 Fr 𝐵 → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)))
333adantr 481 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐻:𝐴1-1-onto𝐵)
34 f1ofun 6718 . . . . . . . . . . 11 (𝐻:𝐴1-1-onto𝐵 → Fun 𝐻)
3533, 34syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → Fun 𝐻)
36 simpl 483 . . . . . . . . . 10 ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → 𝑤 ∈ (𝐻𝑥))
37 fvelima 6835 . . . . . . . . . 10 ((Fun 𝐻𝑤 ∈ (𝐻𝑥)) → ∃𝑦𝑥 (𝐻𝑦) = 𝑤)
3835, 36, 37syl2an 596 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)) → ∃𝑦𝑥 (𝐻𝑦) = 𝑤)
39 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)
40 ssel 3914 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → (𝑦𝑥𝑦𝐴))
4140imdistani 569 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐴𝑦𝑥) → (𝑥𝐴𝑦𝐴))
42 isomin 7208 . . . . . . . . . . . . . . . . . 18 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥 ∩ (𝑅 “ {𝑦})) = ∅ ↔ ((𝐻𝑥) ∩ (𝑆 “ {(𝐻𝑦)})) = ∅))
431, 41, 42syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → ((𝑥 ∩ (𝑅 “ {𝑦})) = ∅ ↔ ((𝐻𝑥) ∩ (𝑆 “ {(𝐻𝑦)})) = ∅))
44 sneq 4571 . . . . . . . . . . . . . . . . . . . 20 ((𝐻𝑦) = 𝑤 → {(𝐻𝑦)} = {𝑤})
4544imaeq2d 5969 . . . . . . . . . . . . . . . . . . 19 ((𝐻𝑦) = 𝑤 → (𝑆 “ {(𝐻𝑦)}) = (𝑆 “ {𝑤}))
4645ineq2d 4146 . . . . . . . . . . . . . . . . . 18 ((𝐻𝑦) = 𝑤 → ((𝐻𝑥) ∩ (𝑆 “ {(𝐻𝑦)})) = ((𝐻𝑥) ∩ (𝑆 “ {𝑤})))
4746eqeq1d 2740 . . . . . . . . . . . . . . . . 17 ((𝐻𝑦) = 𝑤 → (((𝐻𝑥) ∩ (𝑆 “ {(𝐻𝑦)})) = ∅ ↔ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅))
4843, 47sylan9bb 510 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴𝑦𝑥)) ∧ (𝐻𝑦) = 𝑤) → ((𝑥 ∩ (𝑅 “ {𝑦})) = ∅ ↔ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅))
4939, 48syl5ibr 245 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴𝑦𝑥)) ∧ (𝐻𝑦) = 𝑤) → ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
5049exp42 436 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝐴 → (𝑦𝑥 → ((𝐻𝑦) = 𝑤 → ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))))
5150imp 407 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝑦𝑥 → ((𝐻𝑦) = 𝑤 → ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))))
5251com3l 89 . . . . . . . . . . . 12 (𝑦𝑥 → ((𝐻𝑦) = 𝑤 → ((𝜑𝑥𝐴) → ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))))
5352com4t 93 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → (𝑦𝑥 → ((𝐻𝑦) = 𝑤 → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))))
5453imp 407 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)) → (𝑦𝑥 → ((𝐻𝑦) = 𝑤 → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
5554reximdvai 3200 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)) → (∃𝑦𝑥 (𝐻𝑦) = 𝑤 → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
5638, 55mpd 15 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ (𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)
5756rexlimdvaa 3214 . . . . . . 7 ((𝜑𝑥𝐴) → (∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅ → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
5857ex 413 . . . . . 6 (𝜑 → (𝑥𝐴 → (∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅ → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
5958adantrd 492 . . . . 5 (𝜑 → ((𝑥𝐴𝑥 ≠ ∅) → (∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅ → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
6059a2d 29 . . . 4 (𝜑 → (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
6132, 60syld 47 . . 3 (𝜑 → (𝑆 Fr 𝐵 → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
6261alrimdv 1932 . 2 (𝜑 → (𝑆 Fr 𝐵 → ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
63 dffr3 6007 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
6462, 63syl6ibr 251 1 (𝜑 → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wal 1537   = wceq 1539  wex 1782  wcel 2106  wne 2943  wrex 3065  Vcvv 3432  cin 3886  wss 3887  c0 4256  {csn 4561   Fr wfr 5541  ccnv 5588  ran crn 5590  cima 5592  Fun wfun 6427   Fn wfn 6428  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433   Isom wiso 6434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-fr 5544  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442
This theorem is referenced by:  isofr  7213  isofr2  7215  isowe2  7221
  Copyright terms: Public domain W3C validator