MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofrlem Structured version   Visualization version   GIF version

Theorem isofrlem 7315
Description: Lemma for isofr 7317. (Contributed by NM, 29-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
isofrlem.1 (𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
isofrlem.2 (𝜑 → (𝐻𝑥) ∈ V)
Assertion
Ref Expression
isofrlem (𝜑 → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐻   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆

Proof of Theorem isofrlem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isofrlem.1 . . . . . . 7 (𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 isof1o 7298 . . . . . . 7 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
31, 2syl 17 . . . . . 6 (𝜑𝐻:𝐴1-1-onto𝐵)
4 f1ofn 6801 . . . . . . . 8 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
5 n0 4316 . . . . . . . . . 10 (𝑥 ≠ ∅ ↔ ∃𝑦 𝑦𝑥)
6 fnfvima 7207 . . . . . . . . . . . . 13 ((𝐻 Fn 𝐴𝑥𝐴𝑦𝑥) → (𝐻𝑦) ∈ (𝐻𝑥))
76ne0d 4305 . . . . . . . . . . . 12 ((𝐻 Fn 𝐴𝑥𝐴𝑦𝑥) → (𝐻𝑥) ≠ ∅)
873expia 1121 . . . . . . . . . . 11 ((𝐻 Fn 𝐴𝑥𝐴) → (𝑦𝑥 → (𝐻𝑥) ≠ ∅))
98exlimdv 1933 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝑥𝐴) → (∃𝑦 𝑦𝑥 → (𝐻𝑥) ≠ ∅))
105, 9biimtrid 242 . . . . . . . . 9 ((𝐻 Fn 𝐴𝑥𝐴) → (𝑥 ≠ ∅ → (𝐻𝑥) ≠ ∅))
1110expimpd 453 . . . . . . . 8 (𝐻 Fn 𝐴 → ((𝑥𝐴𝑥 ≠ ∅) → (𝐻𝑥) ≠ ∅))
124, 11syl 17 . . . . . . 7 (𝐻:𝐴1-1-onto𝐵 → ((𝑥𝐴𝑥 ≠ ∅) → (𝐻𝑥) ≠ ∅))
13 f1ofo 6807 . . . . . . . 8 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴onto𝐵)
14 imassrn 6042 . . . . . . . . 9 (𝐻𝑥) ⊆ ran 𝐻
15 forn 6775 . . . . . . . . 9 (𝐻:𝐴onto𝐵 → ran 𝐻 = 𝐵)
1614, 15sseqtrid 3989 . . . . . . . 8 (𝐻:𝐴onto𝐵 → (𝐻𝑥) ⊆ 𝐵)
1713, 16syl 17 . . . . . . 7 (𝐻:𝐴1-1-onto𝐵 → (𝐻𝑥) ⊆ 𝐵)
1812, 17jctild 525 . . . . . 6 (𝐻:𝐴1-1-onto𝐵 → ((𝑥𝐴𝑥 ≠ ∅) → ((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅)))
193, 18syl 17 . . . . 5 (𝜑 → ((𝑥𝐴𝑥 ≠ ∅) → ((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅)))
20 dffr3 6070 . . . . . 6 (𝑆 Fr 𝐵 ↔ ∀𝑧((𝑧𝐵𝑧 ≠ ∅) → ∃𝑤𝑧 (𝑧 ∩ (𝑆 “ {𝑤})) = ∅))
21 isofrlem.2 . . . . . . 7 (𝜑 → (𝐻𝑥) ∈ V)
22 sseq1 3972 . . . . . . . . . 10 (𝑧 = (𝐻𝑥) → (𝑧𝐵 ↔ (𝐻𝑥) ⊆ 𝐵))
23 neeq1 2987 . . . . . . . . . 10 (𝑧 = (𝐻𝑥) → (𝑧 ≠ ∅ ↔ (𝐻𝑥) ≠ ∅))
2422, 23anbi12d 632 . . . . . . . . 9 (𝑧 = (𝐻𝑥) → ((𝑧𝐵𝑧 ≠ ∅) ↔ ((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅)))
25 ineq1 4176 . . . . . . . . . . 11 (𝑧 = (𝐻𝑥) → (𝑧 ∩ (𝑆 “ {𝑤})) = ((𝐻𝑥) ∩ (𝑆 “ {𝑤})))
2625eqeq1d 2731 . . . . . . . . . 10 (𝑧 = (𝐻𝑥) → ((𝑧 ∩ (𝑆 “ {𝑤})) = ∅ ↔ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅))
2726rexeqbi1dv 3312 . . . . . . . . 9 (𝑧 = (𝐻𝑥) → (∃𝑤𝑧 (𝑧 ∩ (𝑆 “ {𝑤})) = ∅ ↔ ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅))
2824, 27imbi12d 344 . . . . . . . 8 (𝑧 = (𝐻𝑥) → (((𝑧𝐵𝑧 ≠ ∅) → ∃𝑤𝑧 (𝑧 ∩ (𝑆 “ {𝑤})) = ∅) ↔ (((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)))
2928spcgv 3562 . . . . . . 7 ((𝐻𝑥) ∈ V → (∀𝑧((𝑧𝐵𝑧 ≠ ∅) → ∃𝑤𝑧 (𝑧 ∩ (𝑆 “ {𝑤})) = ∅) → (((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)))
3021, 29syl 17 . . . . . 6 (𝜑 → (∀𝑧((𝑧𝐵𝑧 ≠ ∅) → ∃𝑤𝑧 (𝑧 ∩ (𝑆 “ {𝑤})) = ∅) → (((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)))
3120, 30biimtrid 242 . . . . 5 (𝜑 → (𝑆 Fr 𝐵 → (((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)))
3219, 31syl5d 73 . . . 4 (𝜑 → (𝑆 Fr 𝐵 → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)))
333adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐻:𝐴1-1-onto𝐵)
34 f1ofun 6802 . . . . . . . . . . 11 (𝐻:𝐴1-1-onto𝐵 → Fun 𝐻)
3533, 34syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → Fun 𝐻)
36 simpl 482 . . . . . . . . . 10 ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → 𝑤 ∈ (𝐻𝑥))
37 fvelima 6926 . . . . . . . . . 10 ((Fun 𝐻𝑤 ∈ (𝐻𝑥)) → ∃𝑦𝑥 (𝐻𝑦) = 𝑤)
3835, 36, 37syl2an 596 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)) → ∃𝑦𝑥 (𝐻𝑦) = 𝑤)
39 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)
40 ssel 3940 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → (𝑦𝑥𝑦𝐴))
4140imdistani 568 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐴𝑦𝑥) → (𝑥𝐴𝑦𝐴))
42 isomin 7312 . . . . . . . . . . . . . . . . . 18 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥 ∩ (𝑅 “ {𝑦})) = ∅ ↔ ((𝐻𝑥) ∩ (𝑆 “ {(𝐻𝑦)})) = ∅))
431, 41, 42syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → ((𝑥 ∩ (𝑅 “ {𝑦})) = ∅ ↔ ((𝐻𝑥) ∩ (𝑆 “ {(𝐻𝑦)})) = ∅))
44 sneq 4599 . . . . . . . . . . . . . . . . . . . 20 ((𝐻𝑦) = 𝑤 → {(𝐻𝑦)} = {𝑤})
4544imaeq2d 6031 . . . . . . . . . . . . . . . . . . 19 ((𝐻𝑦) = 𝑤 → (𝑆 “ {(𝐻𝑦)}) = (𝑆 “ {𝑤}))
4645ineq2d 4183 . . . . . . . . . . . . . . . . . 18 ((𝐻𝑦) = 𝑤 → ((𝐻𝑥) ∩ (𝑆 “ {(𝐻𝑦)})) = ((𝐻𝑥) ∩ (𝑆 “ {𝑤})))
4746eqeq1d 2731 . . . . . . . . . . . . . . . . 17 ((𝐻𝑦) = 𝑤 → (((𝐻𝑥) ∩ (𝑆 “ {(𝐻𝑦)})) = ∅ ↔ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅))
4843, 47sylan9bb 509 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴𝑦𝑥)) ∧ (𝐻𝑦) = 𝑤) → ((𝑥 ∩ (𝑅 “ {𝑦})) = ∅ ↔ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅))
4939, 48imbitrrid 246 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴𝑦𝑥)) ∧ (𝐻𝑦) = 𝑤) → ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
5049exp42 435 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝐴 → (𝑦𝑥 → ((𝐻𝑦) = 𝑤 → ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))))
5150imp 406 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝑦𝑥 → ((𝐻𝑦) = 𝑤 → ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))))
5251com3l 89 . . . . . . . . . . . 12 (𝑦𝑥 → ((𝐻𝑦) = 𝑤 → ((𝜑𝑥𝐴) → ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))))
5352com4t 93 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → (𝑦𝑥 → ((𝐻𝑦) = 𝑤 → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))))
5453imp 406 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)) → (𝑦𝑥 → ((𝐻𝑦) = 𝑤 → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
5554reximdvai 3144 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)) → (∃𝑦𝑥 (𝐻𝑦) = 𝑤 → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
5638, 55mpd 15 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ (𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)
5756rexlimdvaa 3135 . . . . . . 7 ((𝜑𝑥𝐴) → (∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅ → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
5857ex 412 . . . . . 6 (𝜑 → (𝑥𝐴 → (∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅ → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
5958adantrd 491 . . . . 5 (𝜑 → ((𝑥𝐴𝑥 ≠ ∅) → (∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅ → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
6059a2d 29 . . . 4 (𝜑 → (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
6132, 60syld 47 . . 3 (𝜑 → (𝑆 Fr 𝐵 → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
6261alrimdv 1929 . 2 (𝜑 → (𝑆 Fr 𝐵 → ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
63 dffr3 6070 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
6462, 63imbitrrdi 252 1 (𝜑 → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  Vcvv 3447  cin 3913  wss 3914  c0 4296  {csn 4589   Fr wfr 5588  ccnv 5637  ran crn 5639  cima 5641  Fun wfun 6505   Fn wfn 6506  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511   Isom wiso 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-fr 5591  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520
This theorem is referenced by:  isofr  7317  isofr2  7319  isowe2  7325
  Copyright terms: Public domain W3C validator