Step | Hyp | Ref
| Expression |
1 | | isofrlem.1 |
. . . . . . 7
⊢ (𝜑 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
2 | | isof1o 7174 |
. . . . . . 7
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐻:𝐴–1-1-onto→𝐵) |
4 | | f1ofn 6701 |
. . . . . . . 8
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻 Fn 𝐴) |
5 | | n0 4277 |
. . . . . . . . . 10
⊢ (𝑥 ≠ ∅ ↔
∃𝑦 𝑦 ∈ 𝑥) |
6 | | fnfvima 7091 |
. . . . . . . . . . . . 13
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥) → (𝐻‘𝑦) ∈ (𝐻 “ 𝑥)) |
7 | 6 | ne0d 4266 |
. . . . . . . . . . . 12
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥) → (𝐻 “ 𝑥) ≠ ∅) |
8 | 7 | 3expia 1119 |
. . . . . . . . . . 11
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴) → (𝑦 ∈ 𝑥 → (𝐻 “ 𝑥) ≠ ∅)) |
9 | 8 | exlimdv 1937 |
. . . . . . . . . 10
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴) → (∃𝑦 𝑦 ∈ 𝑥 → (𝐻 “ 𝑥) ≠ ∅)) |
10 | 5, 9 | syl5bi 241 |
. . . . . . . . 9
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴) → (𝑥 ≠ ∅ → (𝐻 “ 𝑥) ≠ ∅)) |
11 | 10 | expimpd 453 |
. . . . . . . 8
⊢ (𝐻 Fn 𝐴 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → (𝐻 “ 𝑥) ≠ ∅)) |
12 | 4, 11 | syl 17 |
. . . . . . 7
⊢ (𝐻:𝐴–1-1-onto→𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → (𝐻 “ 𝑥) ≠ ∅)) |
13 | | f1ofo 6707 |
. . . . . . . 8
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–onto→𝐵) |
14 | | imassrn 5969 |
. . . . . . . . 9
⊢ (𝐻 “ 𝑥) ⊆ ran 𝐻 |
15 | | forn 6675 |
. . . . . . . . 9
⊢ (𝐻:𝐴–onto→𝐵 → ran 𝐻 = 𝐵) |
16 | 14, 15 | sseqtrid 3969 |
. . . . . . . 8
⊢ (𝐻:𝐴–onto→𝐵 → (𝐻 “ 𝑥) ⊆ 𝐵) |
17 | 13, 16 | syl 17 |
. . . . . . 7
⊢ (𝐻:𝐴–1-1-onto→𝐵 → (𝐻 “ 𝑥) ⊆ 𝐵) |
18 | 12, 17 | jctild 525 |
. . . . . 6
⊢ (𝐻:𝐴–1-1-onto→𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅))) |
19 | 3, 18 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅))) |
20 | | dffr3 5996 |
. . . . . 6
⊢ (𝑆 Fr 𝐵 ↔ ∀𝑧((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅)) |
21 | | isofrlem.2 |
. . . . . . 7
⊢ (𝜑 → (𝐻 “ 𝑥) ∈ V) |
22 | | sseq1 3942 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐻 “ 𝑥) → (𝑧 ⊆ 𝐵 ↔ (𝐻 “ 𝑥) ⊆ 𝐵)) |
23 | | neeq1 3005 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐻 “ 𝑥) → (𝑧 ≠ ∅ ↔ (𝐻 “ 𝑥) ≠ ∅)) |
24 | 22, 23 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑧 = (𝐻 “ 𝑥) → ((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) ↔ ((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅))) |
25 | | ineq1 4136 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐻 “ 𝑥) → (𝑧 ∩ (◡𝑆 “ {𝑤})) = ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤}))) |
26 | 25 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐻 “ 𝑥) → ((𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅ ↔ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) |
27 | 26 | rexeqbi1dv 3332 |
. . . . . . . . 9
⊢ (𝑧 = (𝐻 “ 𝑥) → (∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅ ↔ ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) |
28 | 24, 27 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑧 = (𝐻 “ 𝑥) → (((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅) ↔ (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) |
29 | 28 | spcgv 3525 |
. . . . . . 7
⊢ ((𝐻 “ 𝑥) ∈ V → (∀𝑧((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅) → (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) |
30 | 21, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → (∀𝑧((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅) → (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) |
31 | 20, 30 | syl5bi 241 |
. . . . 5
⊢ (𝜑 → (𝑆 Fr 𝐵 → (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) |
32 | 19, 31 | syl5d 73 |
. . . 4
⊢ (𝜑 → (𝑆 Fr 𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) |
33 | 3 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → 𝐻:𝐴–1-1-onto→𝐵) |
34 | | f1ofun 6702 |
. . . . . . . . . . 11
⊢ (𝐻:𝐴–1-1-onto→𝐵 → Fun 𝐻) |
35 | 33, 34 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → Fun 𝐻) |
36 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → 𝑤 ∈ (𝐻 “ 𝑥)) |
37 | | fvelima 6817 |
. . . . . . . . . 10
⊢ ((Fun
𝐻 ∧ 𝑤 ∈ (𝐻 “ 𝑥)) → ∃𝑦 ∈ 𝑥 (𝐻‘𝑦) = 𝑤) |
38 | 35, 36, 37 | syl2an 595 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ (𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) → ∃𝑦 ∈ 𝑥 (𝐻‘𝑦) = 𝑤) |
39 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) |
40 | | ssel 3910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ⊆ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) |
41 | 40 | imdistani 568 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥) → (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
42 | | isomin 7188 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅ ↔ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)})) = ∅)) |
43 | 1, 41, 42 | syl2an 595 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥)) → ((𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅ ↔ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)})) = ∅)) |
44 | | sneq 4568 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐻‘𝑦) = 𝑤 → {(𝐻‘𝑦)} = {𝑤}) |
45 | 44 | imaeq2d 5958 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐻‘𝑦) = 𝑤 → (◡𝑆 “ {(𝐻‘𝑦)}) = (◡𝑆 “ {𝑤})) |
46 | 45 | ineq2d 4143 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐻‘𝑦) = 𝑤 → ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)})) = ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤}))) |
47 | 46 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻‘𝑦) = 𝑤 → (((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)})) = ∅ ↔ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) |
48 | 43, 47 | sylan9bb 509 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥)) ∧ (𝐻‘𝑦) = 𝑤) → ((𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅ ↔ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) |
49 | 39, 48 | syl5ibr 245 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥)) ∧ (𝐻‘𝑦) = 𝑤) → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
50 | 49 | exp42 435 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ⊆ 𝐴 → (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))))) |
51 | 50 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)))) |
52 | 51 | com3l 89 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → ((𝜑 ∧ 𝑥 ⊆ 𝐴) → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)))) |
53 | 52 | com4t 93 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)))) |
54 | 53 | imp 406 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ (𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) → (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
55 | 54 | reximdvai 3199 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ (𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) → (∃𝑦 ∈ 𝑥 (𝐻‘𝑦) = 𝑤 → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
56 | 38, 55 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ (𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) |
57 | 56 | rexlimdvaa 3213 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
58 | 57 | ex 412 |
. . . . . 6
⊢ (𝜑 → (𝑥 ⊆ 𝐴 → (∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
59 | 58 | adantrd 491 |
. . . . 5
⊢ (𝜑 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → (∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
60 | 59 | a2d 29 |
. . . 4
⊢ (𝜑 → (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
61 | 32, 60 | syld 47 |
. . 3
⊢ (𝜑 → (𝑆 Fr 𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
62 | 61 | alrimdv 1933 |
. 2
⊢ (𝜑 → (𝑆 Fr 𝐵 → ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
63 | | dffr3 5996 |
. 2
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
64 | 62, 63 | syl6ibr 251 |
1
⊢ (𝜑 → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |