MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem12 Structured version   Visualization version   GIF version

Theorem isf32lem12 10317
Description: Lemma for isfin3-2 10320. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
isf32lem40.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
isf32lem12 (𝐺𝑉 → (¬ ω ≼* 𝐺𝐺𝐹))
Distinct variable groups:   𝑔,𝐹   𝑔,𝑎,𝑥,𝐺
Allowed substitution hints:   𝐹(𝑥,𝑎)   𝑉(𝑥,𝑔,𝑎)

Proof of Theorem isf32lem12
Dummy variables 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 8822 . . . . 5 (𝑓 ∈ (𝒫 𝐺m ω) → 𝑓:ω⟶𝒫 𝐺)
2 isf32lem11 10316 . . . . . . . . . 10 ((𝐺𝑉 ∧ (𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) ∧ ¬ ran 𝑓 ∈ ran 𝑓)) → ω ≼* 𝐺)
32expcom 413 . . . . . . . . 9 ((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) ∧ ¬ ran 𝑓 ∈ ran 𝑓) → (𝐺𝑉 → ω ≼* 𝐺))
433expa 1118 . . . . . . . 8 (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏)) ∧ ¬ ran 𝑓 ∈ ran 𝑓) → (𝐺𝑉 → ω ≼* 𝐺))
54impancom 451 . . . . . . 7 (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏)) ∧ 𝐺𝑉) → (¬ ran 𝑓 ∈ ran 𝑓 → ω ≼* 𝐺))
65con1d 145 . . . . . 6 (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏)) ∧ 𝐺𝑉) → (¬ ω ≼* 𝐺 ran 𝑓 ∈ ran 𝑓))
76exp31 419 . . . . 5 (𝑓:ω⟶𝒫 𝐺 → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) → (𝐺𝑉 → (¬ ω ≼* 𝐺 ran 𝑓 ∈ ran 𝑓))))
81, 7syl 17 . . . 4 (𝑓 ∈ (𝒫 𝐺m ω) → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) → (𝐺𝑉 → (¬ ω ≼* 𝐺 ran 𝑓 ∈ ran 𝑓))))
98com4t 93 . . 3 (𝐺𝑉 → (¬ ω ≼* 𝐺 → (𝑓 ∈ (𝒫 𝐺m ω) → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) → ran 𝑓 ∈ ran 𝑓))))
109ralrimdv 3131 . 2 (𝐺𝑉 → (¬ ω ≼* 𝐺 → ∀𝑓 ∈ (𝒫 𝐺m ω)(∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) → ran 𝑓 ∈ ran 𝑓)))
11 isf32lem40.f . . 3 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
1211isfin3ds 10282 . 2 (𝐺𝑉 → (𝐺𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐺m ω)(∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) → ran 𝑓 ∈ ran 𝑓)))
1310, 12sylibrd 259 1 (𝐺𝑉 → (¬ ω ≼* 𝐺𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wss 3914  𝒫 cpw 4563   cint 4910   class class class wbr 5107  ran crn 5639  suc csuc 6334  wf 6507  cfv 6511  (class class class)co 7387  ωcom 7842  m cmap 8799  * cwdom 9517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-wdom 9518  df-card 9892
This theorem is referenced by:  isf33lem  10319  isfin3-2  10320
  Copyright terms: Public domain W3C validator