| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isf32lem12 | Structured version Visualization version GIF version | ||
| Description: Lemma for isfin3-2 10258. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| isf32lem40.f | ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} |
| Ref | Expression |
|---|---|
| isf32lem12 | ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → 𝐺 ∈ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8773 | . . . . 5 ⊢ (𝑓 ∈ (𝒫 𝐺 ↑m ω) → 𝑓:ω⟶𝒫 𝐺) | |
| 2 | isf32lem11 10254 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓)) → ω ≼* 𝐺) | |
| 3 | 2 | expcom 413 | . . . . . . . . 9 ⊢ ((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓) → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
| 4 | 3 | 3expa 1118 | . . . . . . . 8 ⊢ (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏)) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓) → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
| 5 | 4 | impancom 451 | . . . . . . 7 ⊢ (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏)) ∧ 𝐺 ∈ 𝑉) → (¬ ∩ ran 𝑓 ∈ ran 𝑓 → ω ≼* 𝐺)) |
| 6 | 5 | con1d 145 | . . . . . 6 ⊢ (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏)) ∧ 𝐺 ∈ 𝑉) → (¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓)) |
| 7 | 6 | exp31 419 | . . . . 5 ⊢ (𝑓:ω⟶𝒫 𝐺 → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓)))) |
| 8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (𝒫 𝐺 ↑m ω) → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓)))) |
| 9 | 8 | com4t 93 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → (𝑓 ∈ (𝒫 𝐺 ↑m ω) → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → ∩ ran 𝑓 ∈ ran 𝑓)))) |
| 10 | 9 | ralrimdv 3130 | . 2 ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → ∀𝑓 ∈ (𝒫 𝐺 ↑m ω)(∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → ∩ ran 𝑓 ∈ ran 𝑓))) |
| 11 | isf32lem40.f | . . 3 ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} | |
| 12 | 11 | isfin3ds 10220 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝐺 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐺 ↑m ω)(∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → ∩ ran 𝑓 ∈ ran 𝑓))) |
| 13 | 10, 12 | sylibrd 259 | 1 ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → 𝐺 ∈ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ⊆ wss 3897 𝒫 cpw 4547 ∩ cint 4895 class class class wbr 5089 ran crn 5615 suc csuc 6308 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ωcom 7796 ↑m cmap 8750 ≼* cwdom 9450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-wdom 9451 df-card 9832 |
| This theorem is referenced by: isf33lem 10257 isfin3-2 10258 |
| Copyright terms: Public domain | W3C validator |