![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf32lem12 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-2 10344. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
isf32lem40.f | ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} |
Ref | Expression |
---|---|
isf32lem12 | ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → 𝐺 ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8826 | . . . . 5 ⊢ (𝑓 ∈ (𝒫 𝐺 ↑m ω) → 𝑓:ω⟶𝒫 𝐺) | |
2 | isf32lem11 10340 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓)) → ω ≼* 𝐺) | |
3 | 2 | expcom 414 | . . . . . . . . 9 ⊢ ((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓) → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
4 | 3 | 3expa 1118 | . . . . . . . 8 ⊢ (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏)) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓) → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
5 | 4 | impancom 452 | . . . . . . 7 ⊢ (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏)) ∧ 𝐺 ∈ 𝑉) → (¬ ∩ ran 𝑓 ∈ ran 𝑓 → ω ≼* 𝐺)) |
6 | 5 | con1d 145 | . . . . . 6 ⊢ (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏)) ∧ 𝐺 ∈ 𝑉) → (¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓)) |
7 | 6 | exp31 420 | . . . . 5 ⊢ (𝑓:ω⟶𝒫 𝐺 → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓)))) |
8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (𝒫 𝐺 ↑m ω) → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓)))) |
9 | 8 | com4t 93 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → (𝑓 ∈ (𝒫 𝐺 ↑m ω) → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → ∩ ran 𝑓 ∈ ran 𝑓)))) |
10 | 9 | ralrimdv 3151 | . 2 ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → ∀𝑓 ∈ (𝒫 𝐺 ↑m ω)(∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → ∩ ran 𝑓 ∈ ran 𝑓))) |
11 | isf32lem40.f | . . 3 ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} | |
12 | 11 | isfin3ds 10306 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝐺 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐺 ↑m ω)(∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → ∩ ran 𝑓 ∈ ran 𝑓))) |
13 | 10, 12 | sylibrd 258 | 1 ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → 𝐺 ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 {cab 2708 ∀wral 3060 ⊆ wss 3944 𝒫 cpw 4596 ∩ cint 4943 class class class wbr 5141 ran crn 5670 suc csuc 6355 ⟶wf 6528 ‘cfv 6532 (class class class)co 7393 ωcom 7838 ↑m cmap 8803 ≼* cwdom 9541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-isom 6541 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-1o 8448 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-wdom 9542 df-card 9916 |
This theorem is referenced by: isf33lem 10343 isfin3-2 10344 |
Copyright terms: Public domain | W3C validator |