| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isf32lem12 | Structured version Visualization version GIF version | ||
| Description: Lemma for isfin3-2 10320. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| isf32lem40.f | ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} |
| Ref | Expression |
|---|---|
| isf32lem12 | ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → 𝐺 ∈ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8822 | . . . . 5 ⊢ (𝑓 ∈ (𝒫 𝐺 ↑m ω) → 𝑓:ω⟶𝒫 𝐺) | |
| 2 | isf32lem11 10316 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓)) → ω ≼* 𝐺) | |
| 3 | 2 | expcom 413 | . . . . . . . . 9 ⊢ ((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓) → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
| 4 | 3 | 3expa 1118 | . . . . . . . 8 ⊢ (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏)) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓) → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
| 5 | 4 | impancom 451 | . . . . . . 7 ⊢ (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏)) ∧ 𝐺 ∈ 𝑉) → (¬ ∩ ran 𝑓 ∈ ran 𝑓 → ω ≼* 𝐺)) |
| 6 | 5 | con1d 145 | . . . . . 6 ⊢ (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏)) ∧ 𝐺 ∈ 𝑉) → (¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓)) |
| 7 | 6 | exp31 419 | . . . . 5 ⊢ (𝑓:ω⟶𝒫 𝐺 → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓)))) |
| 8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (𝒫 𝐺 ↑m ω) → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓)))) |
| 9 | 8 | com4t 93 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → (𝑓 ∈ (𝒫 𝐺 ↑m ω) → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → ∩ ran 𝑓 ∈ ran 𝑓)))) |
| 10 | 9 | ralrimdv 3131 | . 2 ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → ∀𝑓 ∈ (𝒫 𝐺 ↑m ω)(∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → ∩ ran 𝑓 ∈ ran 𝑓))) |
| 11 | isf32lem40.f | . . 3 ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} | |
| 12 | 11 | isfin3ds 10282 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝐺 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐺 ↑m ω)(∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → ∩ ran 𝑓 ∈ ran 𝑓))) |
| 13 | 10, 12 | sylibrd 259 | 1 ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → 𝐺 ∈ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ⊆ wss 3914 𝒫 cpw 4563 ∩ cint 4910 class class class wbr 5107 ran crn 5639 suc csuc 6334 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ωcom 7842 ↑m cmap 8799 ≼* cwdom 9517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-wdom 9518 df-card 9892 |
| This theorem is referenced by: isf33lem 10319 isfin3-2 10320 |
| Copyright terms: Public domain | W3C validator |