![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf32lem12 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-2 10358. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
isf32lem40.f | β’ πΉ = {π β£ βπ β (π« π βm Ο)(βπ₯ β Ο (πβsuc π₯) β (πβπ₯) β β© ran π β ran π)} |
Ref | Expression |
---|---|
isf32lem12 | β’ (πΊ β π β (Β¬ Ο βΌ* πΊ β πΊ β πΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8839 | . . . . 5 β’ (π β (π« πΊ βm Ο) β π:ΟβΆπ« πΊ) | |
2 | isf32lem11 10354 | . . . . . . . . . 10 β’ ((πΊ β π β§ (π:ΟβΆπ« πΊ β§ βπ β Ο (πβsuc π) β (πβπ) β§ Β¬ β© ran π β ran π)) β Ο βΌ* πΊ) | |
3 | 2 | expcom 414 | . . . . . . . . 9 β’ ((π:ΟβΆπ« πΊ β§ βπ β Ο (πβsuc π) β (πβπ) β§ Β¬ β© ran π β ran π) β (πΊ β π β Ο βΌ* πΊ)) |
4 | 3 | 3expa 1118 | . . . . . . . 8 β’ (((π:ΟβΆπ« πΊ β§ βπ β Ο (πβsuc π) β (πβπ)) β§ Β¬ β© ran π β ran π) β (πΊ β π β Ο βΌ* πΊ)) |
5 | 4 | impancom 452 | . . . . . . 7 β’ (((π:ΟβΆπ« πΊ β§ βπ β Ο (πβsuc π) β (πβπ)) β§ πΊ β π) β (Β¬ β© ran π β ran π β Ο βΌ* πΊ)) |
6 | 5 | con1d 145 | . . . . . 6 β’ (((π:ΟβΆπ« πΊ β§ βπ β Ο (πβsuc π) β (πβπ)) β§ πΊ β π) β (Β¬ Ο βΌ* πΊ β β© ran π β ran π)) |
7 | 6 | exp31 420 | . . . . 5 β’ (π:ΟβΆπ« πΊ β (βπ β Ο (πβsuc π) β (πβπ) β (πΊ β π β (Β¬ Ο βΌ* πΊ β β© ran π β ran π)))) |
8 | 1, 7 | syl 17 | . . . 4 β’ (π β (π« πΊ βm Ο) β (βπ β Ο (πβsuc π) β (πβπ) β (πΊ β π β (Β¬ Ο βΌ* πΊ β β© ran π β ran π)))) |
9 | 8 | com4t 93 | . . 3 β’ (πΊ β π β (Β¬ Ο βΌ* πΊ β (π β (π« πΊ βm Ο) β (βπ β Ο (πβsuc π) β (πβπ) β β© ran π β ran π)))) |
10 | 9 | ralrimdv 3152 | . 2 β’ (πΊ β π β (Β¬ Ο βΌ* πΊ β βπ β (π« πΊ βm Ο)(βπ β Ο (πβsuc π) β (πβπ) β β© ran π β ran π))) |
11 | isf32lem40.f | . . 3 β’ πΉ = {π β£ βπ β (π« π βm Ο)(βπ₯ β Ο (πβsuc π₯) β (πβπ₯) β β© ran π β ran π)} | |
12 | 11 | isfin3ds 10320 | . 2 β’ (πΊ β π β (πΊ β πΉ β βπ β (π« πΊ βm Ο)(βπ β Ο (πβsuc π) β (πβπ) β β© ran π β ran π))) |
13 | 10, 12 | sylibrd 258 | 1 β’ (πΊ β π β (Β¬ Ο βΌ* πΊ β πΊ β πΉ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 {cab 2709 βwral 3061 β wss 3947 π« cpw 4601 β© cint 4949 class class class wbr 5147 ran crn 5676 suc csuc 6363 βΆwf 6536 βcfv 6540 (class class class)co 7405 Οcom 7851 βm cmap 8816 βΌ* cwdom 9555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-wdom 9556 df-card 9930 |
This theorem is referenced by: isf33lem 10357 isfin3-2 10358 |
Copyright terms: Public domain | W3C validator |