Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isf32lem12 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-2 10054. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
isf32lem40.f | ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} |
Ref | Expression |
---|---|
isf32lem12 | ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → 𝐺 ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8595 | . . . . 5 ⊢ (𝑓 ∈ (𝒫 𝐺 ↑m ω) → 𝑓:ω⟶𝒫 𝐺) | |
2 | isf32lem11 10050 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓)) → ω ≼* 𝐺) | |
3 | 2 | expcom 413 | . . . . . . . . 9 ⊢ ((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓) → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
4 | 3 | 3expa 1116 | . . . . . . . 8 ⊢ (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏)) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓) → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
5 | 4 | impancom 451 | . . . . . . 7 ⊢ (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏)) ∧ 𝐺 ∈ 𝑉) → (¬ ∩ ran 𝑓 ∈ ran 𝑓 → ω ≼* 𝐺)) |
6 | 5 | con1d 145 | . . . . . 6 ⊢ (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏)) ∧ 𝐺 ∈ 𝑉) → (¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓)) |
7 | 6 | exp31 419 | . . . . 5 ⊢ (𝑓:ω⟶𝒫 𝐺 → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓)))) |
8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (𝒫 𝐺 ↑m ω) → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓)))) |
9 | 8 | com4t 93 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → (𝑓 ∈ (𝒫 𝐺 ↑m ω) → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → ∩ ran 𝑓 ∈ ran 𝑓)))) |
10 | 9 | ralrimdv 3111 | . 2 ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → ∀𝑓 ∈ (𝒫 𝐺 ↑m ω)(∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → ∩ ran 𝑓 ∈ ran 𝑓))) |
11 | isf32lem40.f | . . 3 ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} | |
12 | 11 | isfin3ds 10016 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝐺 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐺 ↑m ω)(∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → ∩ ran 𝑓 ∈ ran 𝑓))) |
13 | 10, 12 | sylibrd 258 | 1 ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → 𝐺 ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ⊆ wss 3883 𝒫 cpw 4530 ∩ cint 4876 class class class wbr 5070 ran crn 5581 suc csuc 6253 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ωcom 7687 ↑m cmap 8573 ≼* cwdom 9253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-wdom 9254 df-card 9628 |
This theorem is referenced by: isf33lem 10053 isfin3-2 10054 |
Copyright terms: Public domain | W3C validator |