MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem12 Structured version   Visualization version   GIF version

Theorem isf32lem12 10383
Description: Lemma for isfin3-2 10386. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
isf32lem40.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
isf32lem12 (𝐺𝑉 → (¬ ω ≼* 𝐺𝐺𝐹))
Distinct variable groups:   𝑔,𝐹   𝑔,𝑎,𝑥,𝐺
Allowed substitution hints:   𝐹(𝑥,𝑎)   𝑉(𝑥,𝑔,𝑎)

Proof of Theorem isf32lem12
Dummy variables 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 8868 . . . . 5 (𝑓 ∈ (𝒫 𝐺m ω) → 𝑓:ω⟶𝒫 𝐺)
2 isf32lem11 10382 . . . . . . . . . 10 ((𝐺𝑉 ∧ (𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) ∧ ¬ ran 𝑓 ∈ ran 𝑓)) → ω ≼* 𝐺)
32expcom 413 . . . . . . . . 9 ((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) ∧ ¬ ran 𝑓 ∈ ran 𝑓) → (𝐺𝑉 → ω ≼* 𝐺))
433expa 1118 . . . . . . . 8 (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏)) ∧ ¬ ran 𝑓 ∈ ran 𝑓) → (𝐺𝑉 → ω ≼* 𝐺))
54impancom 451 . . . . . . 7 (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏)) ∧ 𝐺𝑉) → (¬ ran 𝑓 ∈ ran 𝑓 → ω ≼* 𝐺))
65con1d 145 . . . . . 6 (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏)) ∧ 𝐺𝑉) → (¬ ω ≼* 𝐺 ran 𝑓 ∈ ran 𝑓))
76exp31 419 . . . . 5 (𝑓:ω⟶𝒫 𝐺 → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) → (𝐺𝑉 → (¬ ω ≼* 𝐺 ran 𝑓 ∈ ran 𝑓))))
81, 7syl 17 . . . 4 (𝑓 ∈ (𝒫 𝐺m ω) → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) → (𝐺𝑉 → (¬ ω ≼* 𝐺 ran 𝑓 ∈ ran 𝑓))))
98com4t 93 . . 3 (𝐺𝑉 → (¬ ω ≼* 𝐺 → (𝑓 ∈ (𝒫 𝐺m ω) → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) → ran 𝑓 ∈ ran 𝑓))))
109ralrimdv 3139 . 2 (𝐺𝑉 → (¬ ω ≼* 𝐺 → ∀𝑓 ∈ (𝒫 𝐺m ω)(∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) → ran 𝑓 ∈ ran 𝑓)))
11 isf32lem40.f . . 3 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
1211isfin3ds 10348 . 2 (𝐺𝑉 → (𝐺𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐺m ω)(∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) → ran 𝑓 ∈ ran 𝑓)))
1310, 12sylibrd 259 1 (𝐺𝑉 → (¬ ω ≼* 𝐺𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wss 3931  𝒫 cpw 4580   cint 4927   class class class wbr 5124  ran crn 5660  suc csuc 6359  wf 6532  cfv 6536  (class class class)co 7410  ωcom 7866  m cmap 8845  * cwdom 9583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-wdom 9584  df-card 9958
This theorem is referenced by:  isf33lem  10385  isfin3-2  10386
  Copyright terms: Public domain W3C validator