MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem12 Structured version   Visualization version   GIF version

Theorem isf32lem12 10355
Description: Lemma for isfin3-2 10358. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
isf32lem40.f 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
Assertion
Ref Expression
isf32lem12 (𝐺 ∈ 𝑉 β†’ (Β¬ Ο‰ β‰Ό* 𝐺 β†’ 𝐺 ∈ 𝐹))
Distinct variable groups:   𝑔,𝐹   𝑔,π‘Ž,π‘₯,𝐺
Allowed substitution hints:   𝐹(π‘₯,π‘Ž)   𝑉(π‘₯,𝑔,π‘Ž)

Proof of Theorem isf32lem12
Dummy variables 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 8839 . . . . 5 (𝑓 ∈ (𝒫 𝐺 ↑m Ο‰) β†’ 𝑓:Ο‰βŸΆπ’« 𝐺)
2 isf32lem11 10354 . . . . . . . . . 10 ((𝐺 ∈ 𝑉 ∧ (𝑓:Ο‰βŸΆπ’« 𝐺 ∧ βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘) ∧ Β¬ ∩ ran 𝑓 ∈ ran 𝑓)) β†’ Ο‰ β‰Ό* 𝐺)
32expcom 414 . . . . . . . . 9 ((𝑓:Ο‰βŸΆπ’« 𝐺 ∧ βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘) ∧ Β¬ ∩ ran 𝑓 ∈ ran 𝑓) β†’ (𝐺 ∈ 𝑉 β†’ Ο‰ β‰Ό* 𝐺))
433expa 1118 . . . . . . . 8 (((𝑓:Ο‰βŸΆπ’« 𝐺 ∧ βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘)) ∧ Β¬ ∩ ran 𝑓 ∈ ran 𝑓) β†’ (𝐺 ∈ 𝑉 β†’ Ο‰ β‰Ό* 𝐺))
54impancom 452 . . . . . . 7 (((𝑓:Ο‰βŸΆπ’« 𝐺 ∧ βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘)) ∧ 𝐺 ∈ 𝑉) β†’ (Β¬ ∩ ran 𝑓 ∈ ran 𝑓 β†’ Ο‰ β‰Ό* 𝐺))
65con1d 145 . . . . . 6 (((𝑓:Ο‰βŸΆπ’« 𝐺 ∧ βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘)) ∧ 𝐺 ∈ 𝑉) β†’ (Β¬ Ο‰ β‰Ό* 𝐺 β†’ ∩ ran 𝑓 ∈ ran 𝑓))
76exp31 420 . . . . 5 (𝑓:Ο‰βŸΆπ’« 𝐺 β†’ (βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘) β†’ (𝐺 ∈ 𝑉 β†’ (Β¬ Ο‰ β‰Ό* 𝐺 β†’ ∩ ran 𝑓 ∈ ran 𝑓))))
81, 7syl 17 . . . 4 (𝑓 ∈ (𝒫 𝐺 ↑m Ο‰) β†’ (βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘) β†’ (𝐺 ∈ 𝑉 β†’ (Β¬ Ο‰ β‰Ό* 𝐺 β†’ ∩ ran 𝑓 ∈ ran 𝑓))))
98com4t 93 . . 3 (𝐺 ∈ 𝑉 β†’ (Β¬ Ο‰ β‰Ό* 𝐺 β†’ (𝑓 ∈ (𝒫 𝐺 ↑m Ο‰) β†’ (βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘) β†’ ∩ ran 𝑓 ∈ ran 𝑓))))
109ralrimdv 3152 . 2 (𝐺 ∈ 𝑉 β†’ (Β¬ Ο‰ β‰Ό* 𝐺 β†’ βˆ€π‘“ ∈ (𝒫 𝐺 ↑m Ο‰)(βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘) β†’ ∩ ran 𝑓 ∈ ran 𝑓)))
11 isf32lem40.f . . 3 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
1211isfin3ds 10320 . 2 (𝐺 ∈ 𝑉 β†’ (𝐺 ∈ 𝐹 ↔ βˆ€π‘“ ∈ (𝒫 𝐺 ↑m Ο‰)(βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘) β†’ ∩ ran 𝑓 ∈ ran 𝑓)))
1310, 12sylibrd 258 1 (𝐺 ∈ 𝑉 β†’ (Β¬ Ο‰ β‰Ό* 𝐺 β†’ 𝐺 ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061   βŠ† wss 3947  π’« cpw 4601  βˆ© cint 4949   class class class wbr 5147  ran crn 5676  suc csuc 6363  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  Ο‰com 7851   ↑m cmap 8816   β‰Ό* cwdom 9555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-wdom 9556  df-card 9930
This theorem is referenced by:  isf33lem  10357  isfin3-2  10358
  Copyright terms: Public domain W3C validator