![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf32lem12 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-2 10436. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
isf32lem40.f | ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} |
Ref | Expression |
---|---|
isf32lem12 | ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → 𝐺 ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8907 | . . . . 5 ⊢ (𝑓 ∈ (𝒫 𝐺 ↑m ω) → 𝑓:ω⟶𝒫 𝐺) | |
2 | isf32lem11 10432 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓)) → ω ≼* 𝐺) | |
3 | 2 | expcom 413 | . . . . . . . . 9 ⊢ ((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓) → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
4 | 3 | 3expa 1118 | . . . . . . . 8 ⊢ (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏)) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓) → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
5 | 4 | impancom 451 | . . . . . . 7 ⊢ (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏)) ∧ 𝐺 ∈ 𝑉) → (¬ ∩ ran 𝑓 ∈ ran 𝑓 → ω ≼* 𝐺)) |
6 | 5 | con1d 145 | . . . . . 6 ⊢ (((𝑓:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏)) ∧ 𝐺 ∈ 𝑉) → (¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓)) |
7 | 6 | exp31 419 | . . . . 5 ⊢ (𝑓:ω⟶𝒫 𝐺 → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓)))) |
8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (𝒫 𝐺 ↑m ω) → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓)))) |
9 | 8 | com4t 93 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → (𝑓 ∈ (𝒫 𝐺 ↑m ω) → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → ∩ ran 𝑓 ∈ ran 𝑓)))) |
10 | 9 | ralrimdv 3158 | . 2 ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → ∀𝑓 ∈ (𝒫 𝐺 ↑m ω)(∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → ∩ ran 𝑓 ∈ ran 𝑓))) |
11 | isf32lem40.f | . . 3 ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} | |
12 | 11 | isfin3ds 10398 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝐺 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐺 ↑m ω)(∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓‘𝑏) → ∩ ran 𝑓 ∈ ran 𝑓))) |
13 | 10, 12 | sylibrd 259 | 1 ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → 𝐺 ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ⊆ wss 3976 𝒫 cpw 4622 ∩ cint 4970 class class class wbr 5166 ran crn 5701 suc csuc 6397 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ωcom 7903 ↑m cmap 8884 ≼* cwdom 9633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-wdom 9634 df-card 10008 |
This theorem is referenced by: isf33lem 10435 isfin3-2 10436 |
Copyright terms: Public domain | W3C validator |