Proof of Theorem ssfz12
Step | Hyp | Ref
| Expression |
1 | | eluz 12452 |
. . . 4
⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ∈
(ℤ≥‘𝐾) ↔ 𝐾 ≤ 𝐿)) |
2 | 1 | biimp3ar 1472 |
. . 3
⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → 𝐿 ∈ (ℤ≥‘𝐾)) |
3 | | eluzfz1 13119 |
. . 3
⊢ (𝐿 ∈
(ℤ≥‘𝐾) → 𝐾 ∈ (𝐾...𝐿)) |
4 | 2, 3 | syl 17 |
. 2
⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → 𝐾 ∈ (𝐾...𝐿)) |
5 | | eluzfz2 13120 |
. . . 4
⊢ (𝐿 ∈
(ℤ≥‘𝐾) → 𝐿 ∈ (𝐾...𝐿)) |
6 | 2, 5 | syl 17 |
. . 3
⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → 𝐿 ∈ (𝐾...𝐿)) |
7 | | ssel2 3895 |
. . . . . . . 8
⊢ (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐾 ∈ (𝐾...𝐿)) → 𝐾 ∈ (𝑀...𝑁)) |
8 | | ssel2 3895 |
. . . . . . . . . . 11
⊢ (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐿 ∈ (𝐾...𝐿)) → 𝐿 ∈ (𝑀...𝑁)) |
9 | | elfzuz3 13109 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐿)) |
10 | | eluz2 12444 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾)) |
11 | | eluz2 12444 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘𝐿) ↔ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ≤ 𝑁)) |
12 | | pm3.21 475 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐿 ≤ 𝑁 → (𝑀 ≤ 𝐾 → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))) |
13 | 12 | 3ad2ant3 1137 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ≤ 𝑁) → (𝑀 ≤ 𝐾 → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))) |
14 | 11, 13 | sylbi 220 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘𝐿) → (𝑀 ≤ 𝐾 → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))) |
15 | 14 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → (𝑁 ∈ (ℤ≥‘𝐿) → (𝑀 ≤ 𝐾 → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁)))) |
16 | 15 | com13 88 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ≤ 𝐾 → (𝑁 ∈ (ℤ≥‘𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁)))) |
17 | 16 | 3ad2ant3 1137 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾) → (𝑁 ∈ (ℤ≥‘𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁)))) |
18 | 10, 17 | sylbi 220 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝑁 ∈ (ℤ≥‘𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁)))) |
19 | | elfzuz 13108 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
20 | 18, 19 | syl11 33 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘𝐿) → (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁)))) |
21 | 8, 9, 20 | 3syl 18 |
. . . . . . . . . 10
⊢ (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐿 ∈ (𝐾...𝐿)) → (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁)))) |
22 | 21 | ex 416 |
. . . . . . . . 9
⊢ ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))))) |
23 | 22 | com4t 93 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))))) |
24 | 7, 23 | syl 17 |
. . . . . . 7
⊢ (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐾 ∈ (𝐾...𝐿)) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))))) |
25 | 24 | ex 416 |
. . . . . 6
⊢ ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐾 ∈ (𝐾...𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁)))))) |
26 | 25 | com24 95 |
. . . . 5
⊢ ((𝐾...𝐿) ⊆ (𝑀...𝑁) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → (𝐾 ∈ (𝐾...𝐿) → (𝐿 ∈ (𝐾...𝐿) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁)))))) |
27 | 26 | pm2.43i 52 |
. . . 4
⊢ ((𝐾...𝐿) ⊆ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → (𝐾 ∈ (𝐾...𝐿) → (𝐿 ∈ (𝐾...𝐿) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))))) |
28 | 27 | com14 96 |
. . 3
⊢ (𝐿 ∈ (𝐾...𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → (𝐾 ∈ (𝐾...𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))))) |
29 | 6, 28 | mpcom 38 |
. 2
⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → (𝐾 ∈ (𝐾...𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁)))) |
30 | 4, 29 | mpd 15 |
1
⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))) |