Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssfz12 Structured version   Visualization version   GIF version

Theorem ssfz12 46321
Description: Subset relationship for finite sets of sequential integers. (Contributed by Alexander van der Vekens, 16-Mar-2018.)
Assertion
Ref Expression
ssfz12 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀𝐾𝐿𝑁)))

Proof of Theorem ssfz12
StepHypRef Expression
1 eluz 12841 . . . 4 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ∈ (ℤ𝐾) ↔ 𝐾𝐿))
21biimp3ar 1469 . . 3 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → 𝐿 ∈ (ℤ𝐾))
3 eluzfz1 13513 . . 3 (𝐿 ∈ (ℤ𝐾) → 𝐾 ∈ (𝐾...𝐿))
42, 3syl 17 . 2 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → 𝐾 ∈ (𝐾...𝐿))
5 eluzfz2 13514 . . . 4 (𝐿 ∈ (ℤ𝐾) → 𝐿 ∈ (𝐾...𝐿))
62, 5syl 17 . . 3 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → 𝐿 ∈ (𝐾...𝐿))
7 ssel2 3977 . . . . . . . 8 (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐾 ∈ (𝐾...𝐿)) → 𝐾 ∈ (𝑀...𝑁))
8 ssel2 3977 . . . . . . . . . . 11 (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐿 ∈ (𝐾...𝐿)) → 𝐿 ∈ (𝑀...𝑁))
9 elfzuz3 13503 . . . . . . . . . . 11 (𝐿 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐿))
10 eluz2 12833 . . . . . . . . . . . . 13 (𝐾 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾))
11 eluz2 12833 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝐿) ↔ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁))
12 pm3.21 471 . . . . . . . . . . . . . . . . . 18 (𝐿𝑁 → (𝑀𝐾 → (𝑀𝐾𝐿𝑁)))
13123ad2ant3 1134 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀𝐾 → (𝑀𝐾𝐿𝑁)))
1411, 13sylbi 216 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ𝐿) → (𝑀𝐾 → (𝑀𝐾𝐿𝑁)))
1514a1i 11 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑁 ∈ (ℤ𝐿) → (𝑀𝐾 → (𝑀𝐾𝐿𝑁))))
1615com13 88 . . . . . . . . . . . . . 14 (𝑀𝐾 → (𝑁 ∈ (ℤ𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
17163ad2ant3 1134 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝑁 ∈ (ℤ𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
1810, 17sylbi 216 . . . . . . . . . . . 12 (𝐾 ∈ (ℤ𝑀) → (𝑁 ∈ (ℤ𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
19 elfzuz 13502 . . . . . . . . . . . 12 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
2018, 19syl11 33 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝐿) → (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
218, 9, 203syl 18 . . . . . . . . . 10 (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐿 ∈ (𝐾...𝐿)) → (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
2221ex 412 . . . . . . . . 9 ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁)))))
2322com4t 93 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁)))))
247, 23syl 17 . . . . . . 7 (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐾 ∈ (𝐾...𝐿)) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁)))))
2524ex 412 . . . . . 6 ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐾 ∈ (𝐾...𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁))))))
2625com24 95 . . . . 5 ((𝐾...𝐿) ⊆ (𝑀...𝑁) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝐾 ∈ (𝐾...𝐿) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁))))))
2726pm2.43i 52 . . . 4 ((𝐾...𝐿) ⊆ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝐾 ∈ (𝐾...𝐿) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁)))))
2827com14 96 . . 3 (𝐿 ∈ (𝐾...𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝐾 ∈ (𝐾...𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀𝐾𝐿𝑁)))))
296, 28mpcom 38 . 2 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝐾 ∈ (𝐾...𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀𝐾𝐿𝑁))))
304, 29mpd 15 1 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀𝐾𝐿𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2105  wss 3948   class class class wbr 5148  cfv 6543  (class class class)co 7412  cle 11254  cz 12563  cuz 12827  ...cfz 13489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-pre-lttri 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7978  df-2nd 7979  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-neg 11452  df-z 12564  df-uz 12828  df-fz 13490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator