Step | Hyp | Ref
| Expression |
1 | | nfv 1922 |
. . . 4
⊢
Ⅎ𝑥 𝐵 Fn On |
2 | | nfra1 3143 |
. . . 4
⊢
Ⅎ𝑥∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)) |
3 | 1, 2 | nfan 1907 |
. . 3
⊢
Ⅎ𝑥(𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) |
4 | | nfv 1922 |
. . . . . 6
⊢
Ⅎ𝑥(𝐵‘𝑦) = (𝐹‘𝑦) |
5 | 3, 4 | nfim 1904 |
. . . . 5
⊢
Ⅎ𝑥((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝐵‘𝑦) = (𝐹‘𝑦)) |
6 | | fveq2 6739 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐵‘𝑥) = (𝐵‘𝑦)) |
7 | | fveq2 6739 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
8 | 6, 7 | eqeq12d 2755 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝐵‘𝑥) = (𝐹‘𝑥) ↔ (𝐵‘𝑦) = (𝐹‘𝑦))) |
9 | 8 | imbi2d 344 |
. . . . 5
⊢ (𝑥 = 𝑦 → (((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝐵‘𝑥) = (𝐹‘𝑥)) ↔ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝐵‘𝑦) = (𝐹‘𝑦)))) |
10 | | r19.21v 3101 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑥 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝐵‘𝑦) = (𝐹‘𝑦)) ↔ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → ∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦))) |
11 | | rsp 3130 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈ On
(𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)) → (𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)))) |
12 | | onss 7590 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ On → 𝑥 ⊆ On) |
13 | | tfr.1 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐹 = recs(𝐺) |
14 | 13 | tfr1 8157 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐹 Fn On |
15 | | fvreseq 6882 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐵 Fn On ∧ 𝐹 Fn On) ∧ 𝑥 ⊆ On) → ((𝐵 ↾ 𝑥) = (𝐹 ↾ 𝑥) ↔ ∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦))) |
16 | 14, 15 | mpanl2 701 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 Fn On ∧ 𝑥 ⊆ On) → ((𝐵 ↾ 𝑥) = (𝐹 ↾ 𝑥) ↔ ∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦))) |
17 | | fveq2 6739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ↾ 𝑥) = (𝐹 ↾ 𝑥) → (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥))) |
18 | 16, 17 | syl6bir 257 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 Fn On ∧ 𝑥 ⊆ On) → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥)))) |
19 | 12, 18 | sylan2 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 Fn On ∧ 𝑥 ∈ On) → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥)))) |
20 | 19 | ancoms 462 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ On ∧ 𝐵 Fn On) → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥)))) |
21 | 20 | imp 410 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦)) → (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥))) |
22 | 21 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦)) ∧ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) ∧ 𝑥 ∈ On)) → (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥))) |
23 | 13 | tfr2 8158 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ On → (𝐹‘𝑥) = (𝐺‘(𝐹 ↾ 𝑥))) |
24 | 23 | jctr 528 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) ∧ (𝑥 ∈ On → (𝐹‘𝑥) = (𝐺‘(𝐹 ↾ 𝑥))))) |
25 | | jcab 521 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ On → ((𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)) ∧ (𝐹‘𝑥) = (𝐺‘(𝐹 ↾ 𝑥)))) ↔ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) ∧ (𝑥 ∈ On → (𝐹‘𝑥) = (𝐺‘(𝐹 ↾ 𝑥))))) |
26 | 24, 25 | sylibr 237 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝑥 ∈ On → ((𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)) ∧ (𝐹‘𝑥) = (𝐺‘(𝐹 ↾ 𝑥))))) |
27 | | eqeq12 2756 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)) ∧ (𝐹‘𝑥) = (𝐺‘(𝐹 ↾ 𝑥))) → ((𝐵‘𝑥) = (𝐹‘𝑥) ↔ (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥)))) |
28 | 26, 27 | syl6 35 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝑥 ∈ On → ((𝐵‘𝑥) = (𝐹‘𝑥) ↔ (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥))))) |
29 | 28 | imp 410 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) ∧ 𝑥 ∈ On) → ((𝐵‘𝑥) = (𝐹‘𝑥) ↔ (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥)))) |
30 | 29 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦)) ∧ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) ∧ 𝑥 ∈ On)) → ((𝐵‘𝑥) = (𝐹‘𝑥) ↔ (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥)))) |
31 | 22, 30 | mpbird 260 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦)) ∧ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) ∧ 𝑥 ∈ On)) → (𝐵‘𝑥) = (𝐹‘𝑥)) |
32 | 31 | exp43 440 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ On ∧ 𝐵 Fn On) → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝑥 ∈ On → (𝐵‘𝑥) = (𝐹‘𝑥))))) |
33 | 32 | com4t 93 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝑥 ∈ On → ((𝑥 ∈ On ∧ 𝐵 Fn On) → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐵‘𝑥) = (𝐹‘𝑥))))) |
34 | 33 | exp4a 435 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝑥 ∈ On → (𝑥 ∈ On → (𝐵 Fn On → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐵‘𝑥) = (𝐹‘𝑥)))))) |
35 | 34 | pm2.43d 53 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝑥 ∈ On → (𝐵 Fn On → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐵‘𝑥) = (𝐹‘𝑥))))) |
36 | 11, 35 | syl 17 |
. . . . . . . . 9
⊢
(∀𝑥 ∈ On
(𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)) → (𝑥 ∈ On → (𝐵 Fn On → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐵‘𝑥) = (𝐹‘𝑥))))) |
37 | 36 | com3l 89 |
. . . . . . . 8
⊢ (𝑥 ∈ On → (𝐵 Fn On → (∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)) → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐵‘𝑥) = (𝐹‘𝑥))))) |
38 | 37 | impd 414 |
. . . . . . 7
⊢ (𝑥 ∈ On → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐵‘𝑥) = (𝐹‘𝑥)))) |
39 | 38 | a2d 29 |
. . . . . 6
⊢ (𝑥 ∈ On → (((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → ∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦)) → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝐵‘𝑥) = (𝐹‘𝑥)))) |
40 | 10, 39 | syl5bi 245 |
. . . . 5
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝐵‘𝑦) = (𝐹‘𝑦)) → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝐵‘𝑥) = (𝐹‘𝑥)))) |
41 | 5, 9, 40 | tfis2f 7656 |
. . . 4
⊢ (𝑥 ∈ On → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝐵‘𝑥) = (𝐹‘𝑥))) |
42 | 41 | com12 32 |
. . 3
⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝑥 ∈ On → (𝐵‘𝑥) = (𝐹‘𝑥))) |
43 | 3, 42 | ralrimi 3140 |
. 2
⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐹‘𝑥)) |
44 | | eqfnfv 6874 |
. . . 4
⊢ ((𝐵 Fn On ∧ 𝐹 Fn On) → (𝐵 = 𝐹 ↔ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐹‘𝑥))) |
45 | 14, 44 | mpan2 691 |
. . 3
⊢ (𝐵 Fn On → (𝐵 = 𝐹 ↔ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐹‘𝑥))) |
46 | 45 | biimpar 481 |
. 2
⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐹‘𝑥)) → 𝐵 = 𝐹) |
47 | 43, 46 | syldan 594 |
1
⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → 𝐵 = 𝐹) |