MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfcoflem Structured version   Visualization version   GIF version

Theorem cfcoflem 10201
Description: Lemma for cfcof 10203, showing subset relation in one direction. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Dec-2014.)
Assertion
Ref Expression
cfcoflem ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝐵,𝑓,𝑥,𝑦

Proof of Theorem cfcoflem
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cff1 10187 . . 3 (𝐵 ∈ On → ∃𝑔(𝑔:(cf‘𝐵)–1-1𝐵 ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)))
2 f1f 6738 . . . . . 6 (𝑔:(cf‘𝐵)–1-1𝐵𝑔:(cf‘𝐵)⟶𝐵)
3 fco 6694 . . . . . . . . . . . . 13 ((𝑓:𝐵𝐴𝑔:(cf‘𝐵)⟶𝐵) → (𝑓𝑔):(cf‘𝐵)⟶𝐴)
43adantlr 715 . . . . . . . . . . . 12 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑓𝑔):(cf‘𝐵)⟶𝐴)
5 r19.29 3094 . . . . . . . . . . . . . . . 16 ((∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃𝑦𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)))
6 ffvelcdm 7035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑔𝑧) ∈ 𝐵)
7 ffn 6670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓:𝐵𝐴𝑓 Fn 𝐵)
8 smoword 8312 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦𝐵 ∧ (𝑔𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔𝑧) ↔ (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))
98biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦𝐵 ∧ (𝑔𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))
109exp32 420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑓 Fn 𝐵 ∧ Smo 𝑓) → (𝑦𝐵 → ((𝑔𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
117, 10sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (𝑦𝐵 → ((𝑔𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
126, 11syl7 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (𝑦𝐵 → ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
1312com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑦𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
1413expdimp 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑧 ∈ (cf‘𝐵) → (𝑦𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
15143imp2 1350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧)))
16 sstr2 3950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ⊆ (𝑓𝑦) → ((𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧)) → 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
1715, 16syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
18 fvco3 6942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → ((𝑓𝑔)‘𝑧) = (𝑓‘(𝑔𝑧)))
1918sseq2d 3976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
2019adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
21203ad2antr1 1189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑥 ⊆ ((𝑓𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
2217, 21sylibrd 259 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
2322expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧)) → (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
24233expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵) → (𝑦 ⊆ (𝑔𝑧) → (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
2524com4t 93 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
2625imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
2726expcomd 416 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) → (𝑦𝐵 → (𝑧 ∈ (cf‘𝐵) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
2827imp31 417 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) ∧ 𝑦𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
2928reximdva 3146 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) ∧ 𝑦𝐵) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3029exp31 419 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → (𝑦𝐵 → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
3130com34 91 . . . . . . . . . . . . . . . . . . 19 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑦𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
3231impcomd 411 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)) → (𝑦𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
3332com23 86 . . . . . . . . . . . . . . . . 17 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑦𝐵 → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
3433rexlimdv 3132 . . . . . . . . . . . . . . . 16 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (∃𝑦𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
355, 34syl5 34 . . . . . . . . . . . . . . 15 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3635expdimp 452 . . . . . . . . . . . . . 14 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3736ralimdv 3147 . . . . . . . . . . . . 13 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3837impr 454 . . . . . . . . . . . 12 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))) → ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))
39 vex 3448 . . . . . . . . . . . . . 14 𝑓 ∈ V
40 vex 3448 . . . . . . . . . . . . . 14 𝑔 ∈ V
4139, 40coex 7886 . . . . . . . . . . . . 13 (𝑓𝑔) ∈ V
42 feq1 6648 . . . . . . . . . . . . . 14 ( = (𝑓𝑔) → (:(cf‘𝐵)⟶𝐴 ↔ (𝑓𝑔):(cf‘𝐵)⟶𝐴))
43 fveq1 6839 . . . . . . . . . . . . . . . . 17 ( = (𝑓𝑔) → (𝑧) = ((𝑓𝑔)‘𝑧))
4443sseq2d 3976 . . . . . . . . . . . . . . . 16 ( = (𝑓𝑔) → (𝑥 ⊆ (𝑧) ↔ 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
4544rexbidv 3157 . . . . . . . . . . . . . . 15 ( = (𝑓𝑔) → (∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧) ↔ ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
4645ralbidv 3156 . . . . . . . . . . . . . 14 ( = (𝑓𝑔) → (∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧) ↔ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
4742, 46anbi12d 632 . . . . . . . . . . . . 13 ( = (𝑓𝑔) → ((:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)) ↔ ((𝑓𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
4841, 47spcev 3569 . . . . . . . . . . . 12 (((𝑓𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))
494, 38, 48syl2an2r 685 . . . . . . . . . . 11 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))
5049exp43 436 . . . . . . . . . 10 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))))
5150com24 95 . . . . . . . . 9 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))))
52513impia 1117 . . . . . . . 8 ((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
5352exlimiv 1930 . . . . . . 7 (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
5453com13 88 . . . . . 6 (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
552, 54syl 17 . . . . 5 (𝑔:(cf‘𝐵)–1-1𝐵 → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
5655imp 406 . . . 4 ((𝑔:(cf‘𝐵)–1-1𝐵 ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))
5756exlimiv 1930 . . 3 (∃𝑔(𝑔:(cf‘𝐵)–1-1𝐵 ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))
581, 57syl 17 . 2 (𝐵 ∈ On → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))
59 cfon 10184 . . 3 (cf‘𝐵) ∈ On
60 cfflb 10188 . . 3 ((𝐴 ∈ On ∧ (cf‘𝐵) ∈ On) → (∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
6159, 60mpan2 691 . 2 (𝐴 ∈ On → (∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
6258, 61sylan9r 508 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  wss 3911  ccom 5635  Oncon0 6320   Fn wfn 6494  wf 6495  1-1wf1 6496  cfv 6499  Smo wsmo 8291  cfccf 9866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-smo 8292  df-recs 8317  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-card 9868  df-cf 9870  df-acn 9871
This theorem is referenced by:  cfcof  10203  cfidm  10204
  Copyright terms: Public domain W3C validator