MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfcoflem Structured version   Visualization version   GIF version

Theorem cfcoflem 9959
Description: Lemma for cfcof 9961, showing subset relation in one direction. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Dec-2014.)
Assertion
Ref Expression
cfcoflem ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝐵,𝑓,𝑥,𝑦

Proof of Theorem cfcoflem
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cff1 9945 . . 3 (𝐵 ∈ On → ∃𝑔(𝑔:(cf‘𝐵)–1-1𝐵 ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)))
2 f1f 6654 . . . . . 6 (𝑔:(cf‘𝐵)–1-1𝐵𝑔:(cf‘𝐵)⟶𝐵)
3 fco 6608 . . . . . . . . . . . . 13 ((𝑓:𝐵𝐴𝑔:(cf‘𝐵)⟶𝐵) → (𝑓𝑔):(cf‘𝐵)⟶𝐴)
43adantlr 711 . . . . . . . . . . . 12 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑓𝑔):(cf‘𝐵)⟶𝐴)
5 r19.29 3183 . . . . . . . . . . . . . . . 16 ((∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃𝑦𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)))
6 ffvelrn 6941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑔𝑧) ∈ 𝐵)
7 ffn 6584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓:𝐵𝐴𝑓 Fn 𝐵)
8 smoword 8168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦𝐵 ∧ (𝑔𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔𝑧) ↔ (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))
98biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦𝐵 ∧ (𝑔𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))
109exp32 420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑓 Fn 𝐵 ∧ Smo 𝑓) → (𝑦𝐵 → ((𝑔𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
117, 10sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (𝑦𝐵 → ((𝑔𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
126, 11syl7 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (𝑦𝐵 → ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
1312com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑦𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
1413expdimp 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑧 ∈ (cf‘𝐵) → (𝑦𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
15143imp2 1347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧)))
16 sstr2 3924 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ⊆ (𝑓𝑦) → ((𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧)) → 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
1715, 16syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
18 fvco3 6849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → ((𝑓𝑔)‘𝑧) = (𝑓‘(𝑔𝑧)))
1918sseq2d 3949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
2019adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
21203ad2antr1 1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑥 ⊆ ((𝑓𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
2217, 21sylibrd 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
2322expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧)) → (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
24233expia 1119 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵) → (𝑦 ⊆ (𝑔𝑧) → (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
2524com4t 93 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
2625imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
2726expcomd 416 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) → (𝑦𝐵 → (𝑧 ∈ (cf‘𝐵) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
2827imp31 417 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) ∧ 𝑦𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
2928reximdva 3202 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) ∧ 𝑦𝐵) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3029exp31 419 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → (𝑦𝐵 → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
3130com34 91 . . . . . . . . . . . . . . . . . . 19 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑦𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
3231impcomd 411 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)) → (𝑦𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
3332com23 86 . . . . . . . . . . . . . . . . 17 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑦𝐵 → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
3433rexlimdv 3211 . . . . . . . . . . . . . . . 16 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (∃𝑦𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
355, 34syl5 34 . . . . . . . . . . . . . . 15 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3635expdimp 452 . . . . . . . . . . . . . 14 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3736ralimdv 3103 . . . . . . . . . . . . 13 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3837impr 454 . . . . . . . . . . . 12 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))) → ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))
39 vex 3426 . . . . . . . . . . . . . 14 𝑓 ∈ V
40 vex 3426 . . . . . . . . . . . . . 14 𝑔 ∈ V
4139, 40coex 7751 . . . . . . . . . . . . 13 (𝑓𝑔) ∈ V
42 feq1 6565 . . . . . . . . . . . . . 14 ( = (𝑓𝑔) → (:(cf‘𝐵)⟶𝐴 ↔ (𝑓𝑔):(cf‘𝐵)⟶𝐴))
43 fveq1 6755 . . . . . . . . . . . . . . . . 17 ( = (𝑓𝑔) → (𝑧) = ((𝑓𝑔)‘𝑧))
4443sseq2d 3949 . . . . . . . . . . . . . . . 16 ( = (𝑓𝑔) → (𝑥 ⊆ (𝑧) ↔ 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
4544rexbidv 3225 . . . . . . . . . . . . . . 15 ( = (𝑓𝑔) → (∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧) ↔ ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
4645ralbidv 3120 . . . . . . . . . . . . . 14 ( = (𝑓𝑔) → (∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧) ↔ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
4742, 46anbi12d 630 . . . . . . . . . . . . 13 ( = (𝑓𝑔) → ((:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)) ↔ ((𝑓𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
4841, 47spcev 3535 . . . . . . . . . . . 12 (((𝑓𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))
494, 38, 48syl2an2r 681 . . . . . . . . . . 11 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))
5049exp43 436 . . . . . . . . . 10 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))))
5150com24 95 . . . . . . . . 9 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))))
52513impia 1115 . . . . . . . 8 ((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
5352exlimiv 1934 . . . . . . 7 (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
5453com13 88 . . . . . 6 (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
552, 54syl 17 . . . . 5 (𝑔:(cf‘𝐵)–1-1𝐵 → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
5655imp 406 . . . 4 ((𝑔:(cf‘𝐵)–1-1𝐵 ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))
5756exlimiv 1934 . . 3 (∃𝑔(𝑔:(cf‘𝐵)–1-1𝐵 ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))
581, 57syl 17 . 2 (𝐵 ∈ On → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))
59 cfon 9942 . . 3 (cf‘𝐵) ∈ On
60 cfflb 9946 . . 3 ((𝐴 ∈ On ∧ (cf‘𝐵) ∈ On) → (∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
6159, 60mpan2 687 . 2 (𝐴 ∈ On → (∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
6258, 61sylan9r 508 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  wss 3883  ccom 5584  Oncon0 6251   Fn wfn 6413  wf 6414  1-1wf1 6415  cfv 6418  Smo wsmo 8147  cfccf 9626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-smo 8148  df-recs 8173  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-card 9628  df-cf 9630  df-acn 9631
This theorem is referenced by:  cfcof  9961  cfidm  9962
  Copyright terms: Public domain W3C validator