| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cff1 10299 | . . 3
⊢ (𝐵 ∈ On → ∃𝑔(𝑔:(cf‘𝐵)–1-1→𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧))) | 
| 2 |  | f1f 6803 | . . . . . 6
⊢ (𝑔:(cf‘𝐵)–1-1→𝐵 → 𝑔:(cf‘𝐵)⟶𝐵) | 
| 3 |  | fco 6759 | . . . . . . . . . . . . 13
⊢ ((𝑓:𝐵⟶𝐴 ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴) | 
| 4 | 3 | adantlr 715 | . . . . . . . . . . . 12
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴) | 
| 5 |  | r19.29 3113 | . . . . . . . . . . . . . . . 16
⊢
((∀𝑦 ∈
𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃𝑦 ∈ 𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ 𝑥 ⊆ (𝑓‘𝑦))) | 
| 6 |  | ffvelcdm 7100 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑔‘𝑧) ∈ 𝐵) | 
| 7 |  | ffn 6735 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑓:𝐵⟶𝐴 → 𝑓 Fn 𝐵) | 
| 8 |  | smoword 8407 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑔‘𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔‘𝑧) ↔ (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))) | 
| 9 | 8 | biimpd 229 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑔‘𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))) | 
| 10 | 9 | exp32 420 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑓 Fn 𝐵 ∧ Smo 𝑓) → (𝑦 ∈ 𝐵 → ((𝑔‘𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) | 
| 11 | 7, 10 | sylan 580 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → (𝑦 ∈ 𝐵 → ((𝑔‘𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) | 
| 12 | 6, 11 | syl7 74 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → (𝑦 ∈ 𝐵 → ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) | 
| 13 | 12 | com23 86 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑦 ∈ 𝐵 → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) | 
| 14 | 13 | expdimp 452 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑧 ∈ (cf‘𝐵) → (𝑦 ∈ 𝐵 → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) | 
| 15 | 14 | 3imp2 1349 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧))) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧))) | 
| 16 |  | sstr2 3989 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 ⊆ (𝑓‘𝑦) → ((𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)) → 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) | 
| 17 | 15, 16 | syl5com 31 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧))) → (𝑥 ⊆ (𝑓‘𝑦) → 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) | 
| 18 |  | fvco3 7007 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → ((𝑓 ∘ 𝑔)‘𝑧) = (𝑓‘(𝑔‘𝑧))) | 
| 19 | 18 | sseq2d 4015 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) | 
| 20 | 19 | adantll 714 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) | 
| 21 | 20 | 3ad2antr1 1188 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧))) → (𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) | 
| 22 | 17, 21 | sylibrd 259 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧))) → (𝑥 ⊆ (𝑓‘𝑦) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) | 
| 23 | 22 | expcom 413 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧)) → (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) | 
| 24 | 23 | 3expia 1121 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 ⊆ (𝑔‘𝑧) → (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) | 
| 25 | 24 | com4t 93 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 ⊆ (𝑔‘𝑧) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) | 
| 26 | 25 | imp 406 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 ⊆ (𝑔‘𝑧) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) | 
| 27 | 26 | expcomd 416 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → (𝑦 ∈ 𝐵 → (𝑧 ∈ (cf‘𝐵) → (𝑦 ⊆ (𝑔‘𝑧) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) | 
| 28 | 27 | imp31 417 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓‘𝑦)) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔‘𝑧) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) | 
| 29 | 28 | reximdva 3167 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓‘𝑦)) ∧ 𝑦 ∈ 𝐵) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) | 
| 30 | 29 | exp31 419 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → (𝑦 ∈ 𝐵 → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) | 
| 31 | 30 | com34 91 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (𝑦 ∈ 𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) | 
| 32 | 31 | impcomd 411 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → (𝑦 ∈ 𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) | 
| 33 | 32 | com23 86 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑦 ∈ 𝐵 → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) | 
| 34 | 33 | rexlimdv 3152 | . . . . . . . . . . . . . . . 16
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (∃𝑦 ∈ 𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) | 
| 35 | 5, 34 | syl5 34 | . . . . . . . . . . . . . . 15
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) | 
| 36 | 35 | expdimp 452 | . . . . . . . . . . . . . 14
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧)) → (∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) | 
| 37 | 36 | ralimdv 3168 | . . . . . . . . . . . . 13
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧)) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦) → ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) | 
| 38 | 37 | impr 454 | . . . . . . . . . . . 12
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦))) → ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)) | 
| 39 |  | vex 3483 | . . . . . . . . . . . . . 14
⊢ 𝑓 ∈ V | 
| 40 |  | vex 3483 | . . . . . . . . . . . . . 14
⊢ 𝑔 ∈ V | 
| 41 | 39, 40 | coex 7953 | . . . . . . . . . . . . 13
⊢ (𝑓 ∘ 𝑔) ∈ V | 
| 42 |  | feq1 6715 | . . . . . . . . . . . . . 14
⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:(cf‘𝐵)⟶𝐴 ↔ (𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴)) | 
| 43 |  | fveq1 6904 | . . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ‘𝑧) = ((𝑓 ∘ 𝑔)‘𝑧)) | 
| 44 | 43 | sseq2d 4015 | . . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑓 ∘ 𝑔) → (𝑥 ⊆ (ℎ‘𝑧) ↔ 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) | 
| 45 | 44 | rexbidv 3178 | . . . . . . . . . . . . . . 15
⊢ (ℎ = (𝑓 ∘ 𝑔) → (∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧) ↔ ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) | 
| 46 | 45 | ralbidv 3177 | . . . . . . . . . . . . . 14
⊢ (ℎ = (𝑓 ∘ 𝑔) → (∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧) ↔ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) | 
| 47 | 42, 46 | anbi12d 632 | . . . . . . . . . . . . 13
⊢ (ℎ = (𝑓 ∘ 𝑔) → ((ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)) ↔ ((𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) | 
| 48 | 41, 47 | spcev 3605 | . . . . . . . . . . . 12
⊢ (((𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))) | 
| 49 | 4, 38, 48 | syl2an2r 685 | . . . . . . . . . . 11
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦))) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))) | 
| 50 | 49 | exp43 436 | . . . . . . . . . 10
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))))) | 
| 51 | 50 | com24 95 | . . . . . . . . 9
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦) → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))))) | 
| 52 | 51 | 3impia 1117 | . . . . . . . 8
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))))) | 
| 53 | 52 | exlimiv 1929 | . . . . . . 7
⊢
(∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))))) | 
| 54 | 53 | com13 88 | . . . . . 6
⊢ (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))))) | 
| 55 | 2, 54 | syl 17 | . . . . 5
⊢ (𝑔:(cf‘𝐵)–1-1→𝐵 → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))))) | 
| 56 | 55 | imp 406 | . . . 4
⊢ ((𝑔:(cf‘𝐵)–1-1→𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧)) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))) | 
| 57 | 56 | exlimiv 1929 | . . 3
⊢
(∃𝑔(𝑔:(cf‘𝐵)–1-1→𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧)) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))) | 
| 58 | 1, 57 | syl 17 | . 2
⊢ (𝐵 ∈ On → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))) | 
| 59 |  | cfon 10296 | . . 3
⊢
(cf‘𝐵) ∈
On | 
| 60 |  | cfflb 10300 | . . 3
⊢ ((𝐴 ∈ On ∧ (cf‘𝐵) ∈ On) →
(∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵))) | 
| 61 | 59, 60 | mpan2 691 | . 2
⊢ (𝐴 ∈ On → (∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵))) | 
| 62 | 58, 61 | sylan9r 508 | 1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → (cf‘𝐴) ⊆ (cf‘𝐵))) |