Step | Hyp | Ref
| Expression |
1 | | cff1 9402 |
. . 3
⊢ (𝐵 ∈ On → ∃𝑔(𝑔:(cf‘𝐵)–1-1→𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧))) |
2 | | f1f 6342 |
. . . . . 6
⊢ (𝑔:(cf‘𝐵)–1-1→𝐵 → 𝑔:(cf‘𝐵)⟶𝐵) |
3 | | fco 6299 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝐵⟶𝐴 ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴) |
4 | 3 | adantlr 706 |
. . . . . . . . . . . . 13
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴) |
5 | 4 | adantr 474 |
. . . . . . . . . . . 12
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦))) → (𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴) |
6 | | r19.29 3282 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑦 ∈
𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃𝑦 ∈ 𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ 𝑥 ⊆ (𝑓‘𝑦))) |
7 | | ffvelrn 6611 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑔‘𝑧) ∈ 𝐵) |
8 | | ffn 6282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑓:𝐵⟶𝐴 → 𝑓 Fn 𝐵) |
9 | | smoword 7734 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑔‘𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔‘𝑧) ↔ (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))) |
10 | 9 | biimpd 221 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑔‘𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))) |
11 | 10 | exp32 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑓 Fn 𝐵 ∧ Smo 𝑓) → (𝑦 ∈ 𝐵 → ((𝑔‘𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) |
12 | 8, 11 | sylan 575 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → (𝑦 ∈ 𝐵 → ((𝑔‘𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) |
13 | 7, 12 | syl7 74 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → (𝑦 ∈ 𝐵 → ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) |
14 | 13 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑦 ∈ 𝐵 → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) |
15 | 14 | expdimp 446 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑧 ∈ (cf‘𝐵) → (𝑦 ∈ 𝐵 → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) |
16 | 15 | 3imp2 1462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧))) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧))) |
17 | | sstr2 3834 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 ⊆ (𝑓‘𝑦) → ((𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)) → 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) |
18 | 16, 17 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧))) → (𝑥 ⊆ (𝑓‘𝑦) → 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) |
19 | | fvco3 6526 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → ((𝑓 ∘ 𝑔)‘𝑧) = (𝑓‘(𝑔‘𝑧))) |
20 | 19 | sseq2d 3858 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) |
21 | 20 | adantll 705 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) |
22 | 21 | 3ad2antr1 1243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧))) → (𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) |
23 | 18, 22 | sylibrd 251 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧))) → (𝑥 ⊆ (𝑓‘𝑦) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
24 | 23 | expcom 404 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧)) → (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) |
25 | 24 | 3expia 1154 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 ⊆ (𝑔‘𝑧) → (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) |
26 | 25 | com4t 93 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 ⊆ (𝑔‘𝑧) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) |
27 | 26 | imp 397 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 ⊆ (𝑔‘𝑧) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) |
28 | 27 | expcomd 408 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → (𝑦 ∈ 𝐵 → (𝑧 ∈ (cf‘𝐵) → (𝑦 ⊆ (𝑔‘𝑧) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) |
29 | 28 | imp31 410 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓‘𝑦)) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔‘𝑧) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
30 | 29 | reximdva 3225 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓‘𝑦)) ∧ 𝑦 ∈ 𝐵) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
31 | 30 | exp31 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → (𝑦 ∈ 𝐵 → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) |
32 | 31 | com34 91 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (𝑦 ∈ 𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) |
33 | 32 | com23 86 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (𝑥 ⊆ (𝑓‘𝑦) → (𝑦 ∈ 𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) |
34 | 33 | impd 400 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → (𝑦 ∈ 𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) |
35 | 34 | com23 86 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑦 ∈ 𝐵 → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) |
36 | 35 | rexlimdv 3239 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (∃𝑦 ∈ 𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
37 | 6, 36 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
38 | 37 | expdimp 446 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧)) → (∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
39 | 38 | ralimdv 3172 |
. . . . . . . . . . . . 13
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧)) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦) → ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
40 | 39 | impr 448 |
. . . . . . . . . . . 12
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦))) → ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)) |
41 | | vex 3417 |
. . . . . . . . . . . . . 14
⊢ 𝑓 ∈ V |
42 | | vex 3417 |
. . . . . . . . . . . . . 14
⊢ 𝑔 ∈ V |
43 | 41, 42 | coex 7385 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∘ 𝑔) ∈ V |
44 | | feq1 6263 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:(cf‘𝐵)⟶𝐴 ↔ (𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴)) |
45 | | fveq1 6436 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ‘𝑧) = ((𝑓 ∘ 𝑔)‘𝑧)) |
46 | 45 | sseq2d 3858 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑓 ∘ 𝑔) → (𝑥 ⊆ (ℎ‘𝑧) ↔ 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
47 | 46 | rexbidv 3262 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = (𝑓 ∘ 𝑔) → (∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧) ↔ ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
48 | 47 | ralbidv 3195 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑓 ∘ 𝑔) → (∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧) ↔ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
49 | 44, 48 | anbi12d 624 |
. . . . . . . . . . . . 13
⊢ (ℎ = (𝑓 ∘ 𝑔) → ((ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)) ↔ ((𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) |
50 | 43, 49 | spcev 3517 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))) |
51 | 5, 40, 50 | syl2anc 579 |
. . . . . . . . . . 11
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦))) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))) |
52 | 51 | exp43 429 |
. . . . . . . . . 10
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))))) |
53 | 52 | com24 95 |
. . . . . . . . 9
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦) → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))))) |
54 | 53 | 3impia 1149 |
. . . . . . . 8
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))))) |
55 | 54 | exlimiv 2029 |
. . . . . . 7
⊢
(∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))))) |
56 | 55 | com13 88 |
. . . . . 6
⊢ (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))))) |
57 | 2, 56 | syl 17 |
. . . . 5
⊢ (𝑔:(cf‘𝐵)–1-1→𝐵 → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))))) |
58 | 57 | imp 397 |
. . . 4
⊢ ((𝑔:(cf‘𝐵)–1-1→𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧)) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))) |
59 | 58 | exlimiv 2029 |
. . 3
⊢
(∃𝑔(𝑔:(cf‘𝐵)–1-1→𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧)) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))) |
60 | 1, 59 | syl 17 |
. 2
⊢ (𝐵 ∈ On → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))) |
61 | | cfon 9399 |
. . 3
⊢
(cf‘𝐵) ∈
On |
62 | | cfflb 9403 |
. . 3
⊢ ((𝐴 ∈ On ∧ (cf‘𝐵) ∈ On) →
(∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵))) |
63 | 61, 62 | mpan2 682 |
. 2
⊢ (𝐴 ∈ On → (∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵))) |
64 | 60, 63 | sylan9r 504 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → (cf‘𝐴) ⊆ (cf‘𝐵))) |