| Step | Hyp | Ref
| Expression |
| 1 | | cff1 10277 |
. . 3
⊢ (𝐵 ∈ On → ∃𝑔(𝑔:(cf‘𝐵)–1-1→𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧))) |
| 2 | | f1f 6779 |
. . . . . 6
⊢ (𝑔:(cf‘𝐵)–1-1→𝐵 → 𝑔:(cf‘𝐵)⟶𝐵) |
| 3 | | fco 6735 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝐵⟶𝐴 ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴) |
| 4 | 3 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴) |
| 5 | | r19.29 3102 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑦 ∈
𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃𝑦 ∈ 𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ 𝑥 ⊆ (𝑓‘𝑦))) |
| 6 | | ffvelcdm 7076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑔‘𝑧) ∈ 𝐵) |
| 7 | | ffn 6711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑓:𝐵⟶𝐴 → 𝑓 Fn 𝐵) |
| 8 | | smoword 8385 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑔‘𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔‘𝑧) ↔ (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))) |
| 9 | 8 | biimpd 229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑔‘𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))) |
| 10 | 9 | exp32 420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑓 Fn 𝐵 ∧ Smo 𝑓) → (𝑦 ∈ 𝐵 → ((𝑔‘𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) |
| 11 | 7, 10 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → (𝑦 ∈ 𝐵 → ((𝑔‘𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) |
| 12 | 6, 11 | syl7 74 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → (𝑦 ∈ 𝐵 → ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) |
| 13 | 12 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑦 ∈ 𝐵 → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) |
| 14 | 13 | expdimp 452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑧 ∈ (cf‘𝐵) → (𝑦 ∈ 𝐵 → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) |
| 15 | 14 | 3imp2 1350 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧))) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧))) |
| 16 | | sstr2 3970 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 ⊆ (𝑓‘𝑦) → ((𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)) → 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) |
| 17 | 15, 16 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧))) → (𝑥 ⊆ (𝑓‘𝑦) → 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) |
| 18 | | fvco3 6983 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → ((𝑓 ∘ 𝑔)‘𝑧) = (𝑓‘(𝑔‘𝑧))) |
| 19 | 18 | sseq2d 3996 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) |
| 20 | 19 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) |
| 21 | 20 | 3ad2antr1 1189 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧))) → (𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) |
| 22 | 17, 21 | sylibrd 259 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧))) → (𝑥 ⊆ (𝑓‘𝑦) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
| 23 | 22 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧)) → (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) |
| 24 | 23 | 3expia 1121 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 ⊆ (𝑔‘𝑧) → (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) |
| 25 | 24 | com4t 93 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 ⊆ (𝑔‘𝑧) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) |
| 26 | 25 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 ⊆ (𝑔‘𝑧) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) |
| 27 | 26 | expcomd 416 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → (𝑦 ∈ 𝐵 → (𝑧 ∈ (cf‘𝐵) → (𝑦 ⊆ (𝑔‘𝑧) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) |
| 28 | 27 | imp31 417 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓‘𝑦)) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔‘𝑧) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
| 29 | 28 | reximdva 3154 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓‘𝑦)) ∧ 𝑦 ∈ 𝐵) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
| 30 | 29 | exp31 419 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → (𝑦 ∈ 𝐵 → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) |
| 31 | 30 | com34 91 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (𝑦 ∈ 𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) |
| 32 | 31 | impcomd 411 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → (𝑦 ∈ 𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) |
| 33 | 32 | com23 86 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑦 ∈ 𝐵 → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) |
| 34 | 33 | rexlimdv 3140 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (∃𝑦 ∈ 𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
| 35 | 5, 34 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
| 36 | 35 | expdimp 452 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧)) → (∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
| 37 | 36 | ralimdv 3155 |
. . . . . . . . . . . . 13
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧)) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦) → ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
| 38 | 37 | impr 454 |
. . . . . . . . . . . 12
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦))) → ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)) |
| 39 | | vex 3468 |
. . . . . . . . . . . . . 14
⊢ 𝑓 ∈ V |
| 40 | | vex 3468 |
. . . . . . . . . . . . . 14
⊢ 𝑔 ∈ V |
| 41 | 39, 40 | coex 7931 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∘ 𝑔) ∈ V |
| 42 | | feq1 6691 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:(cf‘𝐵)⟶𝐴 ↔ (𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴)) |
| 43 | | fveq1 6880 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ‘𝑧) = ((𝑓 ∘ 𝑔)‘𝑧)) |
| 44 | 43 | sseq2d 3996 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑓 ∘ 𝑔) → (𝑥 ⊆ (ℎ‘𝑧) ↔ 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
| 45 | 44 | rexbidv 3165 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = (𝑓 ∘ 𝑔) → (∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧) ↔ ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
| 46 | 45 | ralbidv 3164 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑓 ∘ 𝑔) → (∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧) ↔ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
| 47 | 42, 46 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ (ℎ = (𝑓 ∘ 𝑔) → ((ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)) ↔ ((𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) |
| 48 | 41, 47 | spcev 3590 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))) |
| 49 | 4, 38, 48 | syl2an2r 685 |
. . . . . . . . . . 11
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦))) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))) |
| 50 | 49 | exp43 436 |
. . . . . . . . . 10
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))))) |
| 51 | 50 | com24 95 |
. . . . . . . . 9
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦) → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))))) |
| 52 | 51 | 3impia 1117 |
. . . . . . . 8
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))))) |
| 53 | 52 | exlimiv 1930 |
. . . . . . 7
⊢
(∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))))) |
| 54 | 53 | com13 88 |
. . . . . 6
⊢ (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))))) |
| 55 | 2, 54 | syl 17 |
. . . . 5
⊢ (𝑔:(cf‘𝐵)–1-1→𝐵 → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))))) |
| 56 | 55 | imp 406 |
. . . 4
⊢ ((𝑔:(cf‘𝐵)–1-1→𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧)) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))) |
| 57 | 56 | exlimiv 1930 |
. . 3
⊢
(∃𝑔(𝑔:(cf‘𝐵)–1-1→𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧)) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))) |
| 58 | 1, 57 | syl 17 |
. 2
⊢ (𝐵 ∈ On → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))) |
| 59 | | cfon 10274 |
. . 3
⊢
(cf‘𝐵) ∈
On |
| 60 | | cfflb 10278 |
. . 3
⊢ ((𝐴 ∈ On ∧ (cf‘𝐵) ∈ On) →
(∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵))) |
| 61 | 59, 60 | mpan2 691 |
. 2
⊢ (𝐴 ∈ On → (∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵))) |
| 62 | 58, 61 | sylan9r 508 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → (cf‘𝐴) ⊆ (cf‘𝐵))) |