MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfcoflem Structured version   Visualization version   GIF version

Theorem cfcoflem 9851
Description: Lemma for cfcof 9853, showing subset relation in one direction. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Dec-2014.)
Assertion
Ref Expression
cfcoflem ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝐵,𝑓,𝑥,𝑦

Proof of Theorem cfcoflem
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cff1 9837 . . 3 (𝐵 ∈ On → ∃𝑔(𝑔:(cf‘𝐵)–1-1𝐵 ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)))
2 f1f 6593 . . . . . 6 (𝑔:(cf‘𝐵)–1-1𝐵𝑔:(cf‘𝐵)⟶𝐵)
3 fco 6547 . . . . . . . . . . . . 13 ((𝑓:𝐵𝐴𝑔:(cf‘𝐵)⟶𝐵) → (𝑓𝑔):(cf‘𝐵)⟶𝐴)
43adantlr 715 . . . . . . . . . . . 12 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑓𝑔):(cf‘𝐵)⟶𝐴)
5 r19.29 3166 . . . . . . . . . . . . . . . 16 ((∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃𝑦𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)))
6 ffvelrn 6880 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑔𝑧) ∈ 𝐵)
7 ffn 6523 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓:𝐵𝐴𝑓 Fn 𝐵)
8 smoword 8081 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦𝐵 ∧ (𝑔𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔𝑧) ↔ (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))
98biimpd 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦𝐵 ∧ (𝑔𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))
109exp32 424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑓 Fn 𝐵 ∧ Smo 𝑓) → (𝑦𝐵 → ((𝑔𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
117, 10sylan 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (𝑦𝐵 → ((𝑔𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
126, 11syl7 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (𝑦𝐵 → ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
1312com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑦𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
1413expdimp 456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑧 ∈ (cf‘𝐵) → (𝑦𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
15143imp2 1351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧)))
16 sstr2 3894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ⊆ (𝑓𝑦) → ((𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧)) → 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
1715, 16syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
18 fvco3 6788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → ((𝑓𝑔)‘𝑧) = (𝑓‘(𝑔𝑧)))
1918sseq2d 3919 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
2019adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
21203ad2antr1 1190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑥 ⊆ ((𝑓𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
2217, 21sylibrd 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
2322expcom 417 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧)) → (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
24233expia 1123 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵) → (𝑦 ⊆ (𝑔𝑧) → (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
2524com4t 93 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
2625imp 410 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
2726expcomd 420 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) → (𝑦𝐵 → (𝑧 ∈ (cf‘𝐵) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
2827imp31 421 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) ∧ 𝑦𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
2928reximdva 3183 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) ∧ 𝑦𝐵) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3029exp31 423 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → (𝑦𝐵 → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
3130com34 91 . . . . . . . . . . . . . . . . . . 19 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑦𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
3231impcomd 415 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)) → (𝑦𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
3332com23 86 . . . . . . . . . . . . . . . . 17 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑦𝐵 → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
3433rexlimdv 3192 . . . . . . . . . . . . . . . 16 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (∃𝑦𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
355, 34syl5 34 . . . . . . . . . . . . . . 15 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3635expdimp 456 . . . . . . . . . . . . . 14 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3736ralimdv 3091 . . . . . . . . . . . . 13 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3837impr 458 . . . . . . . . . . . 12 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))) → ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))
39 vex 3402 . . . . . . . . . . . . . 14 𝑓 ∈ V
40 vex 3402 . . . . . . . . . . . . . 14 𝑔 ∈ V
4139, 40coex 7686 . . . . . . . . . . . . 13 (𝑓𝑔) ∈ V
42 feq1 6504 . . . . . . . . . . . . . 14 ( = (𝑓𝑔) → (:(cf‘𝐵)⟶𝐴 ↔ (𝑓𝑔):(cf‘𝐵)⟶𝐴))
43 fveq1 6694 . . . . . . . . . . . . . . . . 17 ( = (𝑓𝑔) → (𝑧) = ((𝑓𝑔)‘𝑧))
4443sseq2d 3919 . . . . . . . . . . . . . . . 16 ( = (𝑓𝑔) → (𝑥 ⊆ (𝑧) ↔ 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
4544rexbidv 3206 . . . . . . . . . . . . . . 15 ( = (𝑓𝑔) → (∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧) ↔ ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
4645ralbidv 3108 . . . . . . . . . . . . . 14 ( = (𝑓𝑔) → (∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧) ↔ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
4742, 46anbi12d 634 . . . . . . . . . . . . 13 ( = (𝑓𝑔) → ((:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)) ↔ ((𝑓𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
4841, 47spcev 3511 . . . . . . . . . . . 12 (((𝑓𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))
494, 38, 48syl2an2r 685 . . . . . . . . . . 11 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))
5049exp43 440 . . . . . . . . . 10 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))))
5150com24 95 . . . . . . . . 9 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))))
52513impia 1119 . . . . . . . 8 ((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
5352exlimiv 1938 . . . . . . 7 (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
5453com13 88 . . . . . 6 (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
552, 54syl 17 . . . . 5 (𝑔:(cf‘𝐵)–1-1𝐵 → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
5655imp 410 . . . 4 ((𝑔:(cf‘𝐵)–1-1𝐵 ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))
5756exlimiv 1938 . . 3 (∃𝑔(𝑔:(cf‘𝐵)–1-1𝐵 ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))
581, 57syl 17 . 2 (𝐵 ∈ On → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))
59 cfon 9834 . . 3 (cf‘𝐵) ∈ On
60 cfflb 9838 . . 3 ((𝐴 ∈ On ∧ (cf‘𝐵) ∈ On) → (∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
6159, 60mpan2 691 . 2 (𝐴 ∈ On → (∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
6258, 61sylan9r 512 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2112  wral 3051  wrex 3052  wss 3853  ccom 5540  Oncon0 6191   Fn wfn 6353  wf 6354  1-1wf1 6355  cfv 6358  Smo wsmo 8060  cfccf 9518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-smo 8061  df-recs 8086  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-card 9520  df-cf 9522  df-acn 9523
This theorem is referenced by:  cfcof  9853  cfidm  9854
  Copyright terms: Public domain W3C validator