MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfcoflem Structured version   Visualization version   GIF version

Theorem cfcoflem 9687
Description: Lemma for cfcof 9689, showing subset relation in one direction. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Dec-2014.)
Assertion
Ref Expression
cfcoflem ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝐵,𝑓,𝑥,𝑦

Proof of Theorem cfcoflem
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cff1 9673 . . 3 (𝐵 ∈ On → ∃𝑔(𝑔:(cf‘𝐵)–1-1𝐵 ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)))
2 f1f 6553 . . . . . 6 (𝑔:(cf‘𝐵)–1-1𝐵𝑔:(cf‘𝐵)⟶𝐵)
3 fco 6509 . . . . . . . . . . . . 13 ((𝑓:𝐵𝐴𝑔:(cf‘𝐵)⟶𝐵) → (𝑓𝑔):(cf‘𝐵)⟶𝐴)
43adantlr 714 . . . . . . . . . . . 12 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑓𝑔):(cf‘𝐵)⟶𝐴)
5 r19.29 3219 . . . . . . . . . . . . . . . 16 ((∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃𝑦𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)))
6 ffvelrn 6830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑔𝑧) ∈ 𝐵)
7 ffn 6491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓:𝐵𝐴𝑓 Fn 𝐵)
8 smoword 7990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦𝐵 ∧ (𝑔𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔𝑧) ↔ (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))
98biimpd 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦𝐵 ∧ (𝑔𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))
109exp32 424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑓 Fn 𝐵 ∧ Smo 𝑓) → (𝑦𝐵 → ((𝑔𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
117, 10sylan 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (𝑦𝐵 → ((𝑔𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
126, 11syl7 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (𝑦𝐵 → ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
1312com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑦𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
1413expdimp 456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑧 ∈ (cf‘𝐵) → (𝑦𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
15143imp2 1346 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧)))
16 sstr2 3925 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ⊆ (𝑓𝑦) → ((𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧)) → 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
1715, 16syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
18 fvco3 6741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → ((𝑓𝑔)‘𝑧) = (𝑓‘(𝑔𝑧)))
1918sseq2d 3950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
2019adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
21203ad2antr1 1185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑥 ⊆ ((𝑓𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
2217, 21sylibrd 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
2322expcom 417 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧)) → (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
24233expia 1118 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵) → (𝑦 ⊆ (𝑔𝑧) → (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
2524com4t 93 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
2625imp 410 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
2726expcomd 420 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) → (𝑦𝐵 → (𝑧 ∈ (cf‘𝐵) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
2827imp31 421 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) ∧ 𝑦𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
2928reximdva 3236 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) ∧ 𝑦𝐵) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3029exp31 423 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → (𝑦𝐵 → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
3130com34 91 . . . . . . . . . . . . . . . . . . 19 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑦𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
3231impcomd 415 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)) → (𝑦𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
3332com23 86 . . . . . . . . . . . . . . . . 17 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑦𝐵 → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
3433rexlimdv 3245 . . . . . . . . . . . . . . . 16 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (∃𝑦𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
355, 34syl5 34 . . . . . . . . . . . . . . 15 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3635expdimp 456 . . . . . . . . . . . . . 14 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3736ralimdv 3148 . . . . . . . . . . . . 13 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3837impr 458 . . . . . . . . . . . 12 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))) → ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))
39 vex 3447 . . . . . . . . . . . . . 14 𝑓 ∈ V
40 vex 3447 . . . . . . . . . . . . . 14 𝑔 ∈ V
4139, 40coex 7621 . . . . . . . . . . . . 13 (𝑓𝑔) ∈ V
42 feq1 6472 . . . . . . . . . . . . . 14 ( = (𝑓𝑔) → (:(cf‘𝐵)⟶𝐴 ↔ (𝑓𝑔):(cf‘𝐵)⟶𝐴))
43 fveq1 6648 . . . . . . . . . . . . . . . . 17 ( = (𝑓𝑔) → (𝑧) = ((𝑓𝑔)‘𝑧))
4443sseq2d 3950 . . . . . . . . . . . . . . . 16 ( = (𝑓𝑔) → (𝑥 ⊆ (𝑧) ↔ 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
4544rexbidv 3259 . . . . . . . . . . . . . . 15 ( = (𝑓𝑔) → (∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧) ↔ ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
4645ralbidv 3165 . . . . . . . . . . . . . 14 ( = (𝑓𝑔) → (∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧) ↔ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
4742, 46anbi12d 633 . . . . . . . . . . . . 13 ( = (𝑓𝑔) → ((:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)) ↔ ((𝑓𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
4841, 47spcev 3558 . . . . . . . . . . . 12 (((𝑓𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))
494, 38, 48syl2an2r 684 . . . . . . . . . . 11 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))
5049exp43 440 . . . . . . . . . 10 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))))
5150com24 95 . . . . . . . . 9 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))))
52513impia 1114 . . . . . . . 8 ((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
5352exlimiv 1931 . . . . . . 7 (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
5453com13 88 . . . . . 6 (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
552, 54syl 17 . . . . 5 (𝑔:(cf‘𝐵)–1-1𝐵 → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
5655imp 410 . . . 4 ((𝑔:(cf‘𝐵)–1-1𝐵 ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))
5756exlimiv 1931 . . 3 (∃𝑔(𝑔:(cf‘𝐵)–1-1𝐵 ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))
581, 57syl 17 . 2 (𝐵 ∈ On → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))
59 cfon 9670 . . 3 (cf‘𝐵) ∈ On
60 cfflb 9674 . . 3 ((𝐴 ∈ On ∧ (cf‘𝐵) ∈ On) → (∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
6159, 60mpan2 690 . 2 (𝐴 ∈ On → (∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
6258, 61sylan9r 512 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2112  wral 3109  wrex 3110  wss 3884  ccom 5527  Oncon0 6163   Fn wfn 6323  wf 6324  1-1wf1 6325  cfv 6328  Smo wsmo 7969  cfccf 9354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-smo 7970  df-recs 7995  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-card 9356  df-cf 9358  df-acn 9359
This theorem is referenced by:  cfcof  9689  cfidm  9690
  Copyright terms: Public domain W3C validator