Step | Hyp | Ref
| Expression |
1 | | cff1 10014 |
. . 3
⊢ (𝐵 ∈ On → ∃𝑔(𝑔:(cf‘𝐵)–1-1→𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧))) |
2 | | f1f 6670 |
. . . . . 6
⊢ (𝑔:(cf‘𝐵)–1-1→𝐵 → 𝑔:(cf‘𝐵)⟶𝐵) |
3 | | fco 6624 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝐵⟶𝐴 ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴) |
4 | 3 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴) |
5 | | r19.29 3184 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑦 ∈
𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃𝑦 ∈ 𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ 𝑥 ⊆ (𝑓‘𝑦))) |
6 | | ffvelrn 6959 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑔‘𝑧) ∈ 𝐵) |
7 | | ffn 6600 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑓:𝐵⟶𝐴 → 𝑓 Fn 𝐵) |
8 | | smoword 8197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑔‘𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔‘𝑧) ↔ (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))) |
9 | 8 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑔‘𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))) |
10 | 9 | exp32 421 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑓 Fn 𝐵 ∧ Smo 𝑓) → (𝑦 ∈ 𝐵 → ((𝑔‘𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) |
11 | 7, 10 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → (𝑦 ∈ 𝐵 → ((𝑔‘𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) |
12 | 6, 11 | syl7 74 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → (𝑦 ∈ 𝐵 → ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) |
13 | 12 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑦 ∈ 𝐵 → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) |
14 | 13 | expdimp 453 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑧 ∈ (cf‘𝐵) → (𝑦 ∈ 𝐵 → (𝑦 ⊆ (𝑔‘𝑧) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)))))) |
15 | 14 | 3imp2 1348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧))) → (𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧))) |
16 | | sstr2 3928 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 ⊆ (𝑓‘𝑦) → ((𝑓‘𝑦) ⊆ (𝑓‘(𝑔‘𝑧)) → 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) |
17 | 15, 16 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧))) → (𝑥 ⊆ (𝑓‘𝑦) → 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) |
18 | | fvco3 6867 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → ((𝑓 ∘ 𝑔)‘𝑧) = (𝑓‘(𝑔‘𝑧))) |
19 | 18 | sseq2d 3953 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑔:(cf‘𝐵)⟶𝐵 ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) |
20 | 19 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) |
21 | 20 | 3ad2antr1 1187 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧))) → (𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔‘𝑧)))) |
22 | 17, 21 | sylibrd 258 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧))) → (𝑥 ⊆ (𝑓‘𝑦) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
23 | 22 | expcom 414 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ (𝑔‘𝑧)) → (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) |
24 | 23 | 3expia 1120 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 ⊆ (𝑔‘𝑧) → (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) |
25 | 24 | com4t 93 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 ⊆ (𝑔‘𝑧) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) |
26 | 25 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 ⊆ (𝑔‘𝑧) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) |
27 | 26 | expcomd 417 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → (𝑦 ∈ 𝐵 → (𝑧 ∈ (cf‘𝐵) → (𝑦 ⊆ (𝑔‘𝑧) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) |
28 | 27 | imp31 418 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓‘𝑦)) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔‘𝑧) → 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
29 | 28 | reximdva 3203 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓‘𝑦)) ∧ 𝑦 ∈ 𝐵) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
30 | 29 | exp31 420 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → (𝑦 ∈ 𝐵 → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) |
31 | 30 | com34 91 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓‘𝑦) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (𝑦 ∈ 𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))))) |
32 | 31 | impcomd 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → (𝑦 ∈ 𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) |
33 | 32 | com23 86 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑦 ∈ 𝐵 → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) |
34 | 33 | rexlimdv 3212 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (∃𝑦 ∈ 𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ 𝑥 ⊆ (𝑓‘𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
35 | 5, 34 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
36 | 35 | expdimp 453 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧)) → (∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
37 | 36 | ralimdv 3109 |
. . . . . . . . . . . . 13
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧)) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦) → ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
38 | 37 | impr 455 |
. . . . . . . . . . . 12
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦))) → ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)) |
39 | | vex 3436 |
. . . . . . . . . . . . . 14
⊢ 𝑓 ∈ V |
40 | | vex 3436 |
. . . . . . . . . . . . . 14
⊢ 𝑔 ∈ V |
41 | 39, 40 | coex 7777 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∘ 𝑔) ∈ V |
42 | | feq1 6581 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:(cf‘𝐵)⟶𝐴 ↔ (𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴)) |
43 | | fveq1 6773 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ‘𝑧) = ((𝑓 ∘ 𝑔)‘𝑧)) |
44 | 43 | sseq2d 3953 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑓 ∘ 𝑔) → (𝑥 ⊆ (ℎ‘𝑧) ↔ 𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
45 | 44 | rexbidv 3226 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = (𝑓 ∘ 𝑔) → (∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧) ↔ ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
46 | 45 | ralbidv 3112 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑓 ∘ 𝑔) → (∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧) ↔ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧))) |
47 | 42, 46 | anbi12d 631 |
. . . . . . . . . . . . 13
⊢ (ℎ = (𝑓 ∘ 𝑔) → ((ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)) ↔ ((𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)))) |
48 | 41, 47 | spcev 3545 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∘ 𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓 ∘ 𝑔)‘𝑧)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))) |
49 | 4, 38, 48 | syl2an2r 682 |
. . . . . . . . . . 11
⊢ ((((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦))) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))) |
50 | 49 | exp43 437 |
. . . . . . . . . 10
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))))) |
51 | 50 | com24 95 |
. . . . . . . . 9
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦) → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))))) |
52 | 51 | 3impia 1116 |
. . . . . . . 8
⊢ ((𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))))) |
53 | 52 | exlimiv 1933 |
. . . . . . 7
⊢
(∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))))) |
54 | 53 | com13 88 |
. . . . . 6
⊢ (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))))) |
55 | 2, 54 | syl 17 |
. . . . 5
⊢ (𝑔:(cf‘𝐵)–1-1→𝐵 → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧))))) |
56 | 55 | imp 407 |
. . . 4
⊢ ((𝑔:(cf‘𝐵)–1-1→𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧)) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))) |
57 | 56 | exlimiv 1933 |
. . 3
⊢
(∃𝑔(𝑔:(cf‘𝐵)–1-1→𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔‘𝑧)) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))) |
58 | 1, 57 | syl 17 |
. 2
⊢ (𝐵 ∈ On → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → ∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)))) |
59 | | cfon 10011 |
. . 3
⊢
(cf‘𝐵) ∈
On |
60 | | cfflb 10015 |
. . 3
⊢ ((𝐴 ∈ On ∧ (cf‘𝐵) ∈ On) →
(∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵))) |
61 | 59, 60 | mpan2 688 |
. 2
⊢ (𝐴 ∈ On → (∃ℎ(ℎ:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (ℎ‘𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵))) |
62 | 58, 61 | sylan9r 509 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ (𝑓‘𝑦)) → (cf‘𝐴) ⊆ (cf‘𝐵))) |