MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirtr Structured version   Visualization version   GIF version

Theorem dirtr 18503
Description: A direction is transitive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
dirtr (((𝑅 ∈ DirRel ∧ 𝐶𝑉) ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴𝑅𝐶)

Proof of Theorem dirtr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldir 18500 . . . . 5 (𝑅 ∈ DirRel → Rel 𝑅)
2 brrelex1 5664 . . . . . . 7 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
32ex 412 . . . . . 6 (Rel 𝑅 → (𝐴𝑅𝐵𝐴 ∈ V))
4 brrelex1 5664 . . . . . . 7 ((Rel 𝑅𝐵𝑅𝐶) → 𝐵 ∈ V)
54ex 412 . . . . . 6 (Rel 𝑅 → (𝐵𝑅𝐶𝐵 ∈ V))
63, 5anim12d 609 . . . . 5 (Rel 𝑅 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
71, 6syl 17 . . . 4 (𝑅 ∈ DirRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
8 eqid 2731 . . . . . . . . . . 11 𝑅 = 𝑅
98isdir 18499 . . . . . . . . . 10 (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅)))))
109ibi 267 . . . . . . . . 9 (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))))
1110simprld 771 . . . . . . . 8 (𝑅 ∈ DirRel → (𝑅𝑅) ⊆ 𝑅)
12 cotr 6054 . . . . . . . 8 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1311, 12sylib 218 . . . . . . 7 (𝑅 ∈ DirRel → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
14 breq12 5091 . . . . . . . . . . 11 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑅𝑦𝐴𝑅𝐵))
15143adant3 1132 . . . . . . . . . 10 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑅𝑦𝐴𝑅𝐵))
16 breq12 5091 . . . . . . . . . . 11 ((𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑅𝑧𝐵𝑅𝐶))
17163adant1 1130 . . . . . . . . . 10 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑅𝑧𝐵𝑅𝐶))
1815, 17anbi12d 632 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))
19 breq12 5091 . . . . . . . . . 10 ((𝑥 = 𝐴𝑧 = 𝐶) → (𝑥𝑅𝑧𝐴𝑅𝐶))
20193adant2 1131 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑅𝑧𝐴𝑅𝐶))
2118, 20imbi12d 344 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
2221spc3gv 3554 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶𝑉) → (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
2313, 22syl5 34 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶𝑉) → (𝑅 ∈ DirRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
24233expia 1121 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐶𝑉 → (𝑅 ∈ DirRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))))
2524com4t 93 . . . 4 (𝑅 ∈ DirRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐶𝑉𝐴𝑅𝐶))))
267, 25mpdd 43 . . 3 (𝑅 ∈ DirRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → (𝐶𝑉𝐴𝑅𝐶)))
2726imp31 417 . 2 (((𝑅 ∈ DirRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) ∧ 𝐶𝑉) → 𝐴𝑅𝐶)
2827an32s 652 1 (((𝑅 ∈ DirRel ∧ 𝐶𝑉) ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897   cuni 4854   class class class wbr 5086   I cid 5505   × cxp 5609  ccnv 5610  cres 5613  ccom 5615  Rel wrel 5616  DirRelcdir 18495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-res 5623  df-dir 18497
This theorem is referenced by:  tailfb  36411
  Copyright terms: Public domain W3C validator