Step | Hyp | Ref
| Expression |
1 | | reldir 18232 |
. . . . 5
⊢ (𝑅 ∈ DirRel → Rel 𝑅) |
2 | | brrelex1 5631 |
. . . . . . 7
⊢ ((Rel
𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) |
3 | 2 | ex 412 |
. . . . . 6
⊢ (Rel
𝑅 → (𝐴𝑅𝐵 → 𝐴 ∈ V)) |
4 | | brrelex1 5631 |
. . . . . . 7
⊢ ((Rel
𝑅 ∧ 𝐵𝑅𝐶) → 𝐵 ∈ V) |
5 | 4 | ex 412 |
. . . . . 6
⊢ (Rel
𝑅 → (𝐵𝑅𝐶 → 𝐵 ∈ V)) |
6 | 3, 5 | anim12d 608 |
. . . . 5
⊢ (Rel
𝑅 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
7 | 1, 6 | syl 17 |
. . . 4
⊢ (𝑅 ∈ DirRel → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
8 | | eqid 2738 |
. . . . . . . . . . 11
⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 |
9 | 8 | isdir 18231 |
. . . . . . . . . 10
⊢ (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel
𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅
× ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅))))) |
10 | 9 | ibi 266 |
. . . . . . . . 9
⊢ (𝑅 ∈ DirRel → ((Rel
𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅
× ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅)))) |
11 | 10 | simprld 768 |
. . . . . . . 8
⊢ (𝑅 ∈ DirRel → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
12 | | cotr 6006 |
. . . . . . . 8
⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
13 | 11, 12 | sylib 217 |
. . . . . . 7
⊢ (𝑅 ∈ DirRel →
∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
14 | | breq12 5075 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥𝑅𝑦 ↔ 𝐴𝑅𝐵)) |
15 | 14 | 3adant3 1130 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥𝑅𝑦 ↔ 𝐴𝑅𝐵)) |
16 | | breq12 5075 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦𝑅𝑧 ↔ 𝐵𝑅𝐶)) |
17 | 16 | 3adant1 1128 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦𝑅𝑧 ↔ 𝐵𝑅𝐶)) |
18 | 15, 17 | anbi12d 630 |
. . . . . . . . 9
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) ↔ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶))) |
19 | | breq12 5075 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝐶) → (𝑥𝑅𝑧 ↔ 𝐴𝑅𝐶)) |
20 | 19 | 3adant2 1129 |
. . . . . . . . 9
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥𝑅𝑧 ↔ 𝐴𝑅𝐶)) |
21 | 18, 20 | imbi12d 344 |
. . . . . . . 8
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶))) |
22 | 21 | spc3gv 3533 |
. . . . . . 7
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ 𝑉) → (∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶))) |
23 | 13, 22 | syl5 34 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ 𝑉) → (𝑅 ∈ DirRel → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶))) |
24 | 23 | 3expia 1119 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐶 ∈ 𝑉 → (𝑅 ∈ DirRel → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)))) |
25 | 24 | com4t 93 |
. . . 4
⊢ (𝑅 ∈ DirRel → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐶 ∈ 𝑉 → 𝐴𝑅𝐶)))) |
26 | 7, 25 | mpdd 43 |
. . 3
⊢ (𝑅 ∈ DirRel → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → (𝐶 ∈ 𝑉 → 𝐴𝑅𝐶))) |
27 | 26 | imp31 417 |
. 2
⊢ (((𝑅 ∈ DirRel ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) ∧ 𝐶 ∈ 𝑉) → 𝐴𝑅𝐶) |
28 | 27 | an32s 648 |
1
⊢ (((𝑅 ∈ DirRel ∧ 𝐶 ∈ 𝑉) ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐴𝑅𝐶) |