MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirtr Structured version   Visualization version   GIF version

Theorem dirtr 18561
Description: A direction is transitive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
dirtr (((𝑅 ∈ DirRel ∧ 𝐶𝑉) ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴𝑅𝐶)

Proof of Theorem dirtr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldir 18558 . . . . 5 (𝑅 ∈ DirRel → Rel 𝑅)
2 brrelex1 5691 . . . . . . 7 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
32ex 412 . . . . . 6 (Rel 𝑅 → (𝐴𝑅𝐵𝐴 ∈ V))
4 brrelex1 5691 . . . . . . 7 ((Rel 𝑅𝐵𝑅𝐶) → 𝐵 ∈ V)
54ex 412 . . . . . 6 (Rel 𝑅 → (𝐵𝑅𝐶𝐵 ∈ V))
63, 5anim12d 609 . . . . 5 (Rel 𝑅 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
71, 6syl 17 . . . 4 (𝑅 ∈ DirRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
8 eqid 2729 . . . . . . . . . . 11 𝑅 = 𝑅
98isdir 18557 . . . . . . . . . 10 (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅)))))
109ibi 267 . . . . . . . . 9 (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))))
1110simprld 771 . . . . . . . 8 (𝑅 ∈ DirRel → (𝑅𝑅) ⊆ 𝑅)
12 cotr 6083 . . . . . . . 8 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1311, 12sylib 218 . . . . . . 7 (𝑅 ∈ DirRel → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
14 breq12 5112 . . . . . . . . . . 11 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑅𝑦𝐴𝑅𝐵))
15143adant3 1132 . . . . . . . . . 10 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑅𝑦𝐴𝑅𝐵))
16 breq12 5112 . . . . . . . . . . 11 ((𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑅𝑧𝐵𝑅𝐶))
17163adant1 1130 . . . . . . . . . 10 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑅𝑧𝐵𝑅𝐶))
1815, 17anbi12d 632 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))
19 breq12 5112 . . . . . . . . . 10 ((𝑥 = 𝐴𝑧 = 𝐶) → (𝑥𝑅𝑧𝐴𝑅𝐶))
20193adant2 1131 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑅𝑧𝐴𝑅𝐶))
2118, 20imbi12d 344 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
2221spc3gv 3570 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶𝑉) → (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
2313, 22syl5 34 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶𝑉) → (𝑅 ∈ DirRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
24233expia 1121 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐶𝑉 → (𝑅 ∈ DirRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))))
2524com4t 93 . . . 4 (𝑅 ∈ DirRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐶𝑉𝐴𝑅𝐶))))
267, 25mpdd 43 . . 3 (𝑅 ∈ DirRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → (𝐶𝑉𝐴𝑅𝐶)))
2726imp31 417 . 2 (((𝑅 ∈ DirRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) ∧ 𝐶𝑉) → 𝐴𝑅𝐶)
2827an32s 652 1 (((𝑅 ∈ DirRel ∧ 𝐶𝑉) ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914   cuni 4871   class class class wbr 5107   I cid 5532   × cxp 5636  ccnv 5637  cres 5640  ccom 5642  Rel wrel 5643  DirRelcdir 18553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-res 5650  df-dir 18555
This theorem is referenced by:  tailfb  36365
  Copyright terms: Public domain W3C validator