| Step | Hyp | Ref
| Expression |
| 1 | | dfac4 10162 |
. . 3
⊢
(CHOICE ↔ ∀𝑥∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤))) |
| 2 | | neeq1 3003 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (𝑧 ≠ ∅ ↔ 𝑤 ≠ ∅)) |
| 3 | 2 | cbvralvw 3237 |
. . . . . . . . . . . 12
⊢
(∀𝑧 ∈
𝑥 𝑧 ≠ ∅ ↔ ∀𝑤 ∈ 𝑥 𝑤 ≠ ∅) |
| 4 | 3 | anbi2i 623 |
. . . . . . . . . . 11
⊢
((∀𝑤 ∈
𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑧 ∈ 𝑥 𝑧 ≠ ∅) ↔ (∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑤 ∈ 𝑥 𝑤 ≠ ∅)) |
| 5 | | r19.26 3111 |
. . . . . . . . . . 11
⊢
(∀𝑤 ∈
𝑥 ((𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑤 ≠ ∅) ↔ (∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑤 ∈ 𝑥 𝑤 ≠ ∅)) |
| 6 | 4, 5 | bitr4i 278 |
. . . . . . . . . 10
⊢
((∀𝑤 ∈
𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑧 ∈ 𝑥 𝑧 ≠ ∅) ↔ ∀𝑤 ∈ 𝑥 ((𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑤 ≠ ∅)) |
| 7 | | pm3.35 803 |
. . . . . . . . . . . 12
⊢ ((𝑤 ≠ ∅ ∧ (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) → (𝑓‘𝑤) ∈ 𝑤) |
| 8 | 7 | ancoms 458 |
. . . . . . . . . . 11
⊢ (((𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑤 ≠ ∅) → (𝑓‘𝑤) ∈ 𝑤) |
| 9 | 8 | ralimi 3083 |
. . . . . . . . . 10
⊢
(∀𝑤 ∈
𝑥 ((𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑤 ≠ ∅) → ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) |
| 10 | 6, 9 | sylbi 217 |
. . . . . . . . 9
⊢
((∀𝑤 ∈
𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑧 ∈ 𝑥 𝑧 ≠ ∅) → ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) |
| 11 | | r19.26 3111 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑤 ∈
𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) ↔ (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) |
| 12 | | elin 3967 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ (𝑣 ∈ 𝑧 ∧ 𝑣 ∈ ran 𝑓)) |
| 13 | | fvelrnb 6969 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 Fn 𝑥 → (𝑣 ∈ ran 𝑓 ↔ ∃𝑡 ∈ 𝑥 (𝑓‘𝑡) = 𝑣)) |
| 14 | 13 | biimpac 478 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑣 ∈ ran 𝑓 ∧ 𝑓 Fn 𝑥) → ∃𝑡 ∈ 𝑥 (𝑓‘𝑡) = 𝑣) |
| 15 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = 𝑡 → (𝑓‘𝑤) = (𝑓‘𝑡)) |
| 16 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = 𝑡 → 𝑤 = 𝑡) |
| 17 | 15, 16 | eleq12d 2835 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 = 𝑡 → ((𝑓‘𝑤) ∈ 𝑤 ↔ (𝑓‘𝑡) ∈ 𝑡)) |
| 18 | | neeq2 3004 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = 𝑡 → (𝑧 ≠ 𝑤 ↔ 𝑧 ≠ 𝑡)) |
| 19 | | ineq2 4214 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = 𝑡 → (𝑧 ∩ 𝑤) = (𝑧 ∩ 𝑡)) |
| 20 | 19 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = 𝑡 → ((𝑧 ∩ 𝑤) = ∅ ↔ (𝑧 ∩ 𝑡) = ∅)) |
| 21 | 18, 20 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 = 𝑡 → ((𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) ↔ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅))) |
| 22 | 17, 21 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑤 = 𝑡 → (((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) ↔ ((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)))) |
| 23 | 22 | rspcv 3618 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 ∈ 𝑥 → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)))) |
| 24 | | minel 4466 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ∩ 𝑡) = ∅) → ¬ (𝑓‘𝑡) ∈ 𝑧) |
| 25 | 24 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑓‘𝑡) ∈ 𝑡 → ((𝑧 ∩ 𝑡) = ∅ → ¬ (𝑓‘𝑡) ∈ 𝑧)) |
| 26 | 25 | imim2d 57 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓‘𝑡) ∈ 𝑡 → ((𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅) → (𝑧 ≠ 𝑡 → ¬ (𝑓‘𝑡) ∈ 𝑧))) |
| 27 | 26 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) → (𝑧 ≠ 𝑡 → ¬ (𝑓‘𝑡) ∈ 𝑧)) |
| 28 | 27 | necon4ad 2959 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) → ((𝑓‘𝑡) ∈ 𝑧 → 𝑧 = 𝑡)) |
| 29 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑓‘𝑡) = 𝑣 → ((𝑓‘𝑡) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧)) |
| 30 | 29 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓‘𝑡) = 𝑣 ∧ 𝑣 ∈ 𝑧) → (𝑓‘𝑡) ∈ 𝑧) |
| 31 | 28, 30 | impel 505 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) ∧ ((𝑓‘𝑡) = 𝑣 ∧ 𝑣 ∈ 𝑧)) → 𝑧 = 𝑡) |
| 32 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = 𝑡 → (𝑓‘𝑧) = (𝑓‘𝑡)) |
| 33 | | eqeq2 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓‘𝑡) = 𝑣 → ((𝑓‘𝑧) = (𝑓‘𝑡) ↔ (𝑓‘𝑧) = 𝑣)) |
| 34 | | eqcom 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓‘𝑧) = 𝑣 ↔ 𝑣 = (𝑓‘𝑧)) |
| 35 | 33, 34 | bitrdi 287 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑓‘𝑡) = 𝑣 → ((𝑓‘𝑧) = (𝑓‘𝑡) ↔ 𝑣 = (𝑓‘𝑧))) |
| 36 | 32, 35 | imbitrid 244 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑓‘𝑡) = 𝑣 → (𝑧 = 𝑡 → 𝑣 = (𝑓‘𝑧))) |
| 37 | 36 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) ∧ ((𝑓‘𝑡) = 𝑣 ∧ 𝑣 ∈ 𝑧)) → (𝑧 = 𝑡 → 𝑣 = (𝑓‘𝑧))) |
| 38 | 31, 37 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) ∧ ((𝑓‘𝑡) = 𝑣 ∧ 𝑣 ∈ 𝑧)) → 𝑣 = (𝑓‘𝑧)) |
| 39 | 38 | exp32 420 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) → ((𝑓‘𝑡) = 𝑣 → (𝑣 ∈ 𝑧 → 𝑣 = (𝑓‘𝑧)))) |
| 40 | 23, 39 | syl6com 37 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑤 ∈
𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑡 ∈ 𝑥 → ((𝑓‘𝑡) = 𝑣 → (𝑣 ∈ 𝑧 → 𝑣 = (𝑓‘𝑧))))) |
| 41 | 40 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 ∈ 𝑧 → (𝑡 ∈ 𝑥 → ((𝑓‘𝑡) = 𝑣 → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → 𝑣 = (𝑓‘𝑧))))) |
| 42 | 41 | rexlimdv 3153 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ∈ 𝑧 → (∃𝑡 ∈ 𝑥 (𝑓‘𝑡) = 𝑣 → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → 𝑣 = (𝑓‘𝑧)))) |
| 43 | 14, 42 | syl5 34 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 ∈ 𝑧 → ((𝑣 ∈ ran 𝑓 ∧ 𝑓 Fn 𝑥) → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → 𝑣 = (𝑓‘𝑧)))) |
| 44 | 43 | expd 415 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ 𝑧 → (𝑣 ∈ ran 𝑓 → (𝑓 Fn 𝑥 → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → 𝑣 = (𝑓‘𝑧))))) |
| 45 | 44 | com4t 93 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 Fn 𝑥 → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑣 ∈ 𝑧 → (𝑣 ∈ ran 𝑓 → 𝑣 = (𝑓‘𝑧))))) |
| 46 | 45 | imp4b 421 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ ran 𝑓) → 𝑣 = (𝑓‘𝑧))) |
| 47 | 12, 46 | biimtrid 242 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) → 𝑣 = (𝑓‘𝑧))) |
| 48 | 11, 47 | sylan2br 595 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 Fn 𝑥 ∧ (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) → 𝑣 = (𝑓‘𝑧))) |
| 49 | 48 | anassrs 467 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) → 𝑣 = (𝑓‘𝑧))) |
| 50 | 49 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) → 𝑣 = (𝑓‘𝑧))) |
| 51 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑧 → (𝑓‘𝑤) = (𝑓‘𝑧)) |
| 52 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑧 → 𝑤 = 𝑧) |
| 53 | 51, 52 | eleq12d 2835 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑧 → ((𝑓‘𝑤) ∈ 𝑤 ↔ (𝑓‘𝑧) ∈ 𝑧)) |
| 54 | 53 | rspcv 3618 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ 𝑥 → (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 → (𝑓‘𝑧) ∈ 𝑧)) |
| 55 | | fnfvelrn 7100 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 Fn 𝑥 ∧ 𝑧 ∈ 𝑥) → (𝑓‘𝑧) ∈ ran 𝑓) |
| 56 | 55 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ 𝑥 → (𝑓 Fn 𝑥 → (𝑓‘𝑧) ∈ ran 𝑓)) |
| 57 | 54, 56 | anim12d 609 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ 𝑥 → ((∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 ∧ 𝑓 Fn 𝑥) → ((𝑓‘𝑧) ∈ 𝑧 ∧ (𝑓‘𝑧) ∈ ran 𝑓))) |
| 58 | | elin 3967 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓) ↔ ((𝑓‘𝑧) ∈ 𝑧 ∧ (𝑓‘𝑧) ∈ ran 𝑓)) |
| 59 | 57, 58 | imbitrrdi 252 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝑥 → ((∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 ∧ 𝑓 Fn 𝑥) → (𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓))) |
| 60 | 59 | expd 415 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑥 → (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 → (𝑓 Fn 𝑥 → (𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓)))) |
| 61 | 60 | com13 88 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 Fn 𝑥 → (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 → (𝑧 ∈ 𝑥 → (𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓)))) |
| 62 | 61 | imp31 417 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) → (𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓)) |
| 63 | | eleq1 2829 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = (𝑓‘𝑧) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ (𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓))) |
| 64 | 62, 63 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) → (𝑣 = (𝑓‘𝑧) → 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
| 65 | 64 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑣 = (𝑓‘𝑧) → 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
| 66 | 50, 65 | impbid 212 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧))) |
| 67 | 66 | ex 412 |
. . . . . . . . . . . . 13
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) → (∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)))) |
| 68 | 67 | alrimdv 1929 |
. . . . . . . . . . . 12
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) → (∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)))) |
| 69 | | fvex 6919 |
. . . . . . . . . . . . . 14
⊢ (𝑓‘𝑧) ∈ V |
| 70 | | eqeq2 2749 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑓‘𝑧) → (𝑣 = ℎ ↔ 𝑣 = (𝑓‘𝑧))) |
| 71 | 70 | bibi2d 342 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = (𝑓‘𝑧) → ((𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = ℎ) ↔ (𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)))) |
| 72 | 71 | albidv 1920 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑓‘𝑧) → (∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = ℎ) ↔ ∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)))) |
| 73 | 69, 72 | spcev 3606 |
. . . . . . . . . . . . 13
⊢
(∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)) → ∃ℎ∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = ℎ)) |
| 74 | | eu6 2574 |
. . . . . . . . . . . . 13
⊢
(∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ ∃ℎ∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = ℎ)) |
| 75 | 73, 74 | sylibr 234 |
. . . . . . . . . . . 12
⊢
(∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)) → ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓)) |
| 76 | 68, 75 | syl6 35 |
. . . . . . . . . . 11
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) → (∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
| 77 | 76 | ralimdva 3167 |
. . . . . . . . . 10
⊢ ((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) → (∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
| 78 | 77 | ex 412 |
. . . . . . . . 9
⊢ (𝑓 Fn 𝑥 → (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 → (∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓)))) |
| 79 | 10, 78 | syl5 34 |
. . . . . . . 8
⊢ (𝑓 Fn 𝑥 → ((∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑧 ∈ 𝑥 𝑧 ≠ ∅) → (∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓)))) |
| 80 | 79 | expd 415 |
. . . . . . 7
⊢ (𝑓 Fn 𝑥 → (∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) → (∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ → (∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))))) |
| 81 | 80 | imp4b 421 |
. . . . . 6
⊢ ((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) → ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
| 82 | | vex 3484 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
| 83 | 82 | rnex 7932 |
. . . . . . 7
⊢ ran 𝑓 ∈ V |
| 84 | | ineq2 4214 |
. . . . . . . . . 10
⊢ (𝑦 = ran 𝑓 → (𝑧 ∩ 𝑦) = (𝑧 ∩ ran 𝑓)) |
| 85 | 84 | eleq2d 2827 |
. . . . . . . . 9
⊢ (𝑦 = ran 𝑓 → (𝑣 ∈ (𝑧 ∩ 𝑦) ↔ 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
| 86 | 85 | eubidv 2586 |
. . . . . . . 8
⊢ (𝑦 = ran 𝑓 → (∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
| 87 | 86 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑦 = ran 𝑓 → (∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
| 88 | 83, 87 | spcev 3606 |
. . . . . 6
⊢
(∀𝑧 ∈
𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) |
| 89 | 81, 88 | syl6 35 |
. . . . 5
⊢ ((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) → ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
| 90 | 89 | exlimiv 1930 |
. . . 4
⊢
(∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) → ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
| 91 | 90 | alimi 1811 |
. . 3
⊢
(∀𝑥∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) → ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
| 92 | 1, 91 | sylbi 217 |
. 2
⊢
(CHOICE → ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
| 93 | | eqid 2737 |
. . . . 5
⊢ {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} |
| 94 | | biid 261 |
. . . . 5
⊢
(∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
| 95 | | eqid 2737 |
. . . . 5
⊢ (∪ {𝑢
∣ (𝑢 ≠ ∅
∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} ∩ 𝑦) = (∪ {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} ∩ 𝑦) |
| 96 | 93, 94, 95 | dfac5lem5 10167 |
. . . 4
⊢
(∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) → ∃𝑓∀𝑤 ∈ ℎ (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) |
| 97 | 96 | alrimiv 1927 |
. . 3
⊢
(∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) → ∀ℎ∃𝑓∀𝑤 ∈ ℎ (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) |
| 98 | | dfac3 10161 |
. . 3
⊢
(CHOICE ↔ ∀ℎ∃𝑓∀𝑤 ∈ ℎ (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) |
| 99 | 97, 98 | sylibr 234 |
. 2
⊢
(∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) →
CHOICE) |
| 100 | 92, 99 | impbii 209 |
1
⊢
(CHOICE ↔ ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |