Step | Hyp | Ref
| Expression |
1 | | dfac4 9809 |
. . 3
⊢
(CHOICE ↔ ∀𝑥∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤))) |
2 | | neeq1 3005 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (𝑧 ≠ ∅ ↔ 𝑤 ≠ ∅)) |
3 | 2 | cbvralvw 3372 |
. . . . . . . . . . . 12
⊢
(∀𝑧 ∈
𝑥 𝑧 ≠ ∅ ↔ ∀𝑤 ∈ 𝑥 𝑤 ≠ ∅) |
4 | 3 | anbi2i 622 |
. . . . . . . . . . 11
⊢
((∀𝑤 ∈
𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑧 ∈ 𝑥 𝑧 ≠ ∅) ↔ (∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑤 ∈ 𝑥 𝑤 ≠ ∅)) |
5 | | r19.26 3094 |
. . . . . . . . . . 11
⊢
(∀𝑤 ∈
𝑥 ((𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑤 ≠ ∅) ↔ (∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑤 ∈ 𝑥 𝑤 ≠ ∅)) |
6 | 4, 5 | bitr4i 277 |
. . . . . . . . . 10
⊢
((∀𝑤 ∈
𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑧 ∈ 𝑥 𝑧 ≠ ∅) ↔ ∀𝑤 ∈ 𝑥 ((𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑤 ≠ ∅)) |
7 | | pm3.35 799 |
. . . . . . . . . . . 12
⊢ ((𝑤 ≠ ∅ ∧ (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) → (𝑓‘𝑤) ∈ 𝑤) |
8 | 7 | ancoms 458 |
. . . . . . . . . . 11
⊢ (((𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑤 ≠ ∅) → (𝑓‘𝑤) ∈ 𝑤) |
9 | 8 | ralimi 3086 |
. . . . . . . . . 10
⊢
(∀𝑤 ∈
𝑥 ((𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑤 ≠ ∅) → ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) |
10 | 6, 9 | sylbi 216 |
. . . . . . . . 9
⊢
((∀𝑤 ∈
𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑧 ∈ 𝑥 𝑧 ≠ ∅) → ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) |
11 | | r19.26 3094 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑤 ∈
𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) ↔ (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) |
12 | | elin 3899 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ (𝑣 ∈ 𝑧 ∧ 𝑣 ∈ ran 𝑓)) |
13 | | fvelrnb 6812 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 Fn 𝑥 → (𝑣 ∈ ran 𝑓 ↔ ∃𝑡 ∈ 𝑥 (𝑓‘𝑡) = 𝑣)) |
14 | 13 | biimpac 478 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑣 ∈ ran 𝑓 ∧ 𝑓 Fn 𝑥) → ∃𝑡 ∈ 𝑥 (𝑓‘𝑡) = 𝑣) |
15 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = 𝑡 → (𝑓‘𝑤) = (𝑓‘𝑡)) |
16 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = 𝑡 → 𝑤 = 𝑡) |
17 | 15, 16 | eleq12d 2833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 = 𝑡 → ((𝑓‘𝑤) ∈ 𝑤 ↔ (𝑓‘𝑡) ∈ 𝑡)) |
18 | | neeq2 3006 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = 𝑡 → (𝑧 ≠ 𝑤 ↔ 𝑧 ≠ 𝑡)) |
19 | | ineq2 4137 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = 𝑡 → (𝑧 ∩ 𝑤) = (𝑧 ∩ 𝑡)) |
20 | 19 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = 𝑡 → ((𝑧 ∩ 𝑤) = ∅ ↔ (𝑧 ∩ 𝑡) = ∅)) |
21 | 18, 20 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 = 𝑡 → ((𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) ↔ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅))) |
22 | 17, 21 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑤 = 𝑡 → (((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) ↔ ((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)))) |
23 | 22 | rspcv 3547 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 ∈ 𝑥 → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)))) |
24 | | minel 4396 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ∩ 𝑡) = ∅) → ¬ (𝑓‘𝑡) ∈ 𝑧) |
25 | 24 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑓‘𝑡) ∈ 𝑡 → ((𝑧 ∩ 𝑡) = ∅ → ¬ (𝑓‘𝑡) ∈ 𝑧)) |
26 | 25 | imim2d 57 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓‘𝑡) ∈ 𝑡 → ((𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅) → (𝑧 ≠ 𝑡 → ¬ (𝑓‘𝑡) ∈ 𝑧))) |
27 | 26 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) → (𝑧 ≠ 𝑡 → ¬ (𝑓‘𝑡) ∈ 𝑧)) |
28 | 27 | necon4ad 2961 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) → ((𝑓‘𝑡) ∈ 𝑧 → 𝑧 = 𝑡)) |
29 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑓‘𝑡) = 𝑣 → ((𝑓‘𝑡) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧)) |
30 | 29 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓‘𝑡) = 𝑣 ∧ 𝑣 ∈ 𝑧) → (𝑓‘𝑡) ∈ 𝑧) |
31 | 28, 30 | impel 505 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) ∧ ((𝑓‘𝑡) = 𝑣 ∧ 𝑣 ∈ 𝑧)) → 𝑧 = 𝑡) |
32 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = 𝑡 → (𝑓‘𝑧) = (𝑓‘𝑡)) |
33 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓‘𝑡) = 𝑣 → ((𝑓‘𝑧) = (𝑓‘𝑡) ↔ (𝑓‘𝑧) = 𝑣)) |
34 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓‘𝑧) = 𝑣 ↔ 𝑣 = (𝑓‘𝑧)) |
35 | 33, 34 | bitrdi 286 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑓‘𝑡) = 𝑣 → ((𝑓‘𝑧) = (𝑓‘𝑡) ↔ 𝑣 = (𝑓‘𝑧))) |
36 | 32, 35 | syl5ib 243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑓‘𝑡) = 𝑣 → (𝑧 = 𝑡 → 𝑣 = (𝑓‘𝑧))) |
37 | 36 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) ∧ ((𝑓‘𝑡) = 𝑣 ∧ 𝑣 ∈ 𝑧)) → (𝑧 = 𝑡 → 𝑣 = (𝑓‘𝑧))) |
38 | 31, 37 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) ∧ ((𝑓‘𝑡) = 𝑣 ∧ 𝑣 ∈ 𝑧)) → 𝑣 = (𝑓‘𝑧)) |
39 | 38 | exp32 420 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) → ((𝑓‘𝑡) = 𝑣 → (𝑣 ∈ 𝑧 → 𝑣 = (𝑓‘𝑧)))) |
40 | 23, 39 | syl6com 37 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑤 ∈
𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑡 ∈ 𝑥 → ((𝑓‘𝑡) = 𝑣 → (𝑣 ∈ 𝑧 → 𝑣 = (𝑓‘𝑧))))) |
41 | 40 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 ∈ 𝑧 → (𝑡 ∈ 𝑥 → ((𝑓‘𝑡) = 𝑣 → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → 𝑣 = (𝑓‘𝑧))))) |
42 | 41 | rexlimdv 3211 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ∈ 𝑧 → (∃𝑡 ∈ 𝑥 (𝑓‘𝑡) = 𝑣 → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → 𝑣 = (𝑓‘𝑧)))) |
43 | 14, 42 | syl5 34 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 ∈ 𝑧 → ((𝑣 ∈ ran 𝑓 ∧ 𝑓 Fn 𝑥) → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → 𝑣 = (𝑓‘𝑧)))) |
44 | 43 | expd 415 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ 𝑧 → (𝑣 ∈ ran 𝑓 → (𝑓 Fn 𝑥 → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → 𝑣 = (𝑓‘𝑧))))) |
45 | 44 | com4t 93 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 Fn 𝑥 → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑣 ∈ 𝑧 → (𝑣 ∈ ran 𝑓 → 𝑣 = (𝑓‘𝑧))))) |
46 | 45 | imp4b 421 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ ran 𝑓) → 𝑣 = (𝑓‘𝑧))) |
47 | 12, 46 | syl5bi 241 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) → 𝑣 = (𝑓‘𝑧))) |
48 | 11, 47 | sylan2br 594 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 Fn 𝑥 ∧ (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) → 𝑣 = (𝑓‘𝑧))) |
49 | 48 | anassrs 467 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) → 𝑣 = (𝑓‘𝑧))) |
50 | 49 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) → 𝑣 = (𝑓‘𝑧))) |
51 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑧 → (𝑓‘𝑤) = (𝑓‘𝑧)) |
52 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑧 → 𝑤 = 𝑧) |
53 | 51, 52 | eleq12d 2833 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑧 → ((𝑓‘𝑤) ∈ 𝑤 ↔ (𝑓‘𝑧) ∈ 𝑧)) |
54 | 53 | rspcv 3547 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ 𝑥 → (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 → (𝑓‘𝑧) ∈ 𝑧)) |
55 | | fnfvelrn 6940 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 Fn 𝑥 ∧ 𝑧 ∈ 𝑥) → (𝑓‘𝑧) ∈ ran 𝑓) |
56 | 55 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ 𝑥 → (𝑓 Fn 𝑥 → (𝑓‘𝑧) ∈ ran 𝑓)) |
57 | 54, 56 | anim12d 608 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ 𝑥 → ((∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 ∧ 𝑓 Fn 𝑥) → ((𝑓‘𝑧) ∈ 𝑧 ∧ (𝑓‘𝑧) ∈ ran 𝑓))) |
58 | | elin 3899 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓) ↔ ((𝑓‘𝑧) ∈ 𝑧 ∧ (𝑓‘𝑧) ∈ ran 𝑓)) |
59 | 57, 58 | syl6ibr 251 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝑥 → ((∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 ∧ 𝑓 Fn 𝑥) → (𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓))) |
60 | 59 | expd 415 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑥 → (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 → (𝑓 Fn 𝑥 → (𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓)))) |
61 | 60 | com13 88 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 Fn 𝑥 → (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 → (𝑧 ∈ 𝑥 → (𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓)))) |
62 | 61 | imp31 417 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) → (𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓)) |
63 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = (𝑓‘𝑧) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ (𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓))) |
64 | 62, 63 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) → (𝑣 = (𝑓‘𝑧) → 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
65 | 64 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑣 = (𝑓‘𝑧) → 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
66 | 50, 65 | impbid 211 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧))) |
67 | 66 | ex 412 |
. . . . . . . . . . . . 13
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) → (∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)))) |
68 | 67 | alrimdv 1933 |
. . . . . . . . . . . 12
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) → (∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)))) |
69 | | fvex 6769 |
. . . . . . . . . . . . . 14
⊢ (𝑓‘𝑧) ∈ V |
70 | | eqeq2 2750 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑓‘𝑧) → (𝑣 = ℎ ↔ 𝑣 = (𝑓‘𝑧))) |
71 | 70 | bibi2d 342 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = (𝑓‘𝑧) → ((𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = ℎ) ↔ (𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)))) |
72 | 71 | albidv 1924 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑓‘𝑧) → (∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = ℎ) ↔ ∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)))) |
73 | 69, 72 | spcev 3535 |
. . . . . . . . . . . . 13
⊢
(∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)) → ∃ℎ∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = ℎ)) |
74 | | eu6 2574 |
. . . . . . . . . . . . 13
⊢
(∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ ∃ℎ∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = ℎ)) |
75 | 73, 74 | sylibr 233 |
. . . . . . . . . . . 12
⊢
(∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)) → ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓)) |
76 | 68, 75 | syl6 35 |
. . . . . . . . . . 11
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) → (∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
77 | 76 | ralimdva 3102 |
. . . . . . . . . 10
⊢ ((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) → (∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
78 | 77 | ex 412 |
. . . . . . . . 9
⊢ (𝑓 Fn 𝑥 → (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 → (∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓)))) |
79 | 10, 78 | syl5 34 |
. . . . . . . 8
⊢ (𝑓 Fn 𝑥 → ((∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑧 ∈ 𝑥 𝑧 ≠ ∅) → (∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓)))) |
80 | 79 | expd 415 |
. . . . . . 7
⊢ (𝑓 Fn 𝑥 → (∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) → (∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ → (∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))))) |
81 | 80 | imp4b 421 |
. . . . . 6
⊢ ((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) → ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
82 | | vex 3426 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
83 | 82 | rnex 7733 |
. . . . . . 7
⊢ ran 𝑓 ∈ V |
84 | | ineq2 4137 |
. . . . . . . . . 10
⊢ (𝑦 = ran 𝑓 → (𝑧 ∩ 𝑦) = (𝑧 ∩ ran 𝑓)) |
85 | 84 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑦 = ran 𝑓 → (𝑣 ∈ (𝑧 ∩ 𝑦) ↔ 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
86 | 85 | eubidv 2586 |
. . . . . . . 8
⊢ (𝑦 = ran 𝑓 → (∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
87 | 86 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑦 = ran 𝑓 → (∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
88 | 83, 87 | spcev 3535 |
. . . . . 6
⊢
(∀𝑧 ∈
𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) |
89 | 81, 88 | syl6 35 |
. . . . 5
⊢ ((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) → ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
90 | 89 | exlimiv 1934 |
. . . 4
⊢
(∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) → ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
91 | 90 | alimi 1815 |
. . 3
⊢
(∀𝑥∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) → ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
92 | 1, 91 | sylbi 216 |
. 2
⊢
(CHOICE → ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
93 | | eqid 2738 |
. . . . 5
⊢ {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} |
94 | | eqid 2738 |
. . . . 5
⊢ (∪ {𝑢
∣ (𝑢 ≠ ∅
∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} ∩ 𝑦) = (∪ {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} ∩ 𝑦) |
95 | | biid 260 |
. . . . 5
⊢
(∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
96 | 93, 94, 95 | dfac5lem5 9814 |
. . . 4
⊢
(∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) → ∃𝑓∀𝑤 ∈ ℎ (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) |
97 | 96 | alrimiv 1931 |
. . 3
⊢
(∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) → ∀ℎ∃𝑓∀𝑤 ∈ ℎ (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) |
98 | | dfac3 9808 |
. . 3
⊢
(CHOICE ↔ ∀ℎ∃𝑓∀𝑤 ∈ ℎ (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) |
99 | 97, 98 | sylibr 233 |
. 2
⊢
(∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) →
CHOICE) |
100 | 92, 99 | impbii 208 |
1
⊢
(CHOICE ↔ ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |