MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difabs Structured version   Visualization version   GIF version

Theorem difabs 4227
Description: Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.)
Assertion
Ref Expression
difabs ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)

Proof of Theorem difabs
StepHypRef Expression
1 difun1 4223 . 2 (𝐴 ∖ (𝐵𝐵)) = ((𝐴𝐵) ∖ 𝐵)
2 unidm 4086 . . 3 (𝐵𝐵) = 𝐵
32difeq2i 4054 . 2 (𝐴 ∖ (𝐵𝐵)) = (𝐴𝐵)
41, 3eqtr3i 2768 1 ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3884  cun 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894
This theorem is referenced by:  axcclem  10213  lpdifsn  22294  compne  42059
  Copyright terms: Public domain W3C validator