| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difabs | Structured version Visualization version GIF version | ||
| Description: Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.) |
| Ref | Expression |
|---|---|
| difabs | ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difun1 4249 | . 2 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐵)) = ((𝐴 ∖ 𝐵) ∖ 𝐵) | |
| 2 | unidm 4107 | . . 3 ⊢ (𝐵 ∪ 𝐵) = 𝐵 | |
| 3 | 2 | difeq2i 4073 | . 2 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐵)) = (𝐴 ∖ 𝐵) |
| 4 | 1, 3 | eqtr3i 2756 | 1 ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3899 ∪ cun 3900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 |
| This theorem is referenced by: axcclem 10345 lpdifsn 23056 compne 44472 |
| Copyright terms: Public domain | W3C validator |