Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difabs | Structured version Visualization version GIF version |
Description: Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.) |
Ref | Expression |
---|---|
difabs | ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difun1 4220 | . 2 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐵)) = ((𝐴 ∖ 𝐵) ∖ 𝐵) | |
2 | unidm 4082 | . . 3 ⊢ (𝐵 ∪ 𝐵) = 𝐵 | |
3 | 2 | difeq2i 4050 | . 2 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐵)) = (𝐴 ∖ 𝐵) |
4 | 1, 3 | eqtr3i 2768 | 1 ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3880 ∪ cun 3881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 |
This theorem is referenced by: axcclem 10144 lpdifsn 22202 compne 41948 |
Copyright terms: Public domain | W3C validator |