![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difabs | Structured version Visualization version GIF version |
Description: Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.) |
Ref | Expression |
---|---|
difabs | ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difun1 4305 | . 2 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐵)) = ((𝐴 ∖ 𝐵) ∖ 𝐵) | |
2 | unidm 4167 | . . 3 ⊢ (𝐵 ∪ 𝐵) = 𝐵 | |
3 | 2 | difeq2i 4133 | . 2 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐵)) = (𝐴 ∖ 𝐵) |
4 | 1, 3 | eqtr3i 2765 | 1 ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3960 ∪ cun 3961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 |
This theorem is referenced by: axcclem 10495 lpdifsn 23167 compne 44437 |
Copyright terms: Public domain | W3C validator |