MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difabs Structured version   Visualization version   GIF version

Theorem difabs 4293
Description: Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.)
Assertion
Ref Expression
difabs ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)

Proof of Theorem difabs
StepHypRef Expression
1 difun1 4289 . 2 (𝐴 ∖ (𝐵𝐵)) = ((𝐴𝐵) ∖ 𝐵)
2 unidm 4152 . . 3 (𝐵𝐵) = 𝐵
32difeq2i 4119 . 2 (𝐴 ∖ (𝐵𝐵)) = (𝐴𝐵)
41, 3eqtr3i 2761 1 ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3945  cun 3946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955
This theorem is referenced by:  axcclem  10458  lpdifsn  22967  compne  43663
  Copyright terms: Public domain W3C validator