MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difabs Structured version   Visualization version   GIF version

Theorem difabs 4283
Description: Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.)
Assertion
Ref Expression
difabs ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)

Proof of Theorem difabs
StepHypRef Expression
1 difun1 4279 . 2 (𝐴 ∖ (𝐵𝐵)) = ((𝐴𝐵) ∖ 𝐵)
2 unidm 4137 . . 3 (𝐵𝐵) = 𝐵
32difeq2i 4103 . 2 (𝐴 ∖ (𝐵𝐵)) = (𝐴𝐵)
41, 3eqtr3i 2761 1 ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3928  cun 3929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938
This theorem is referenced by:  axcclem  10476  lpdifsn  23086  compne  44440
  Copyright terms: Public domain W3C validator