Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.) |
Ref | Expression |
---|---|
csbeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
csbeq1d | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | csbeq1 3831 | . 2 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: csbeq12dv 3837 csbco3g 4359 csbidm 4361 fmptcof 6984 mpomptsx 7877 dmmpossx 7879 fmpox 7880 ovmptss 7904 fmpoco 7906 xpf1o 8875 hsmexlem2 10114 iundom2g 10227 sumeq2ii 15333 summolem3 15354 summolem2a 15355 summo 15357 zsum 15358 fsum 15360 sumsnf 15383 fsumcnv 15413 fsumcom2 15414 fsumshftm 15421 fsum0diag2 15423 prodeq2ii 15551 prodmolem3 15571 prodmolem2a 15572 prodmo 15574 zprod 15575 fprod 15579 prodsn 15600 prodsnf 15602 fprodcnv 15621 fprodcom2 15622 bpolylem 15686 bpolyval 15687 ruclem1 15868 pcmpt 16521 gsumvalx 18275 odfval 19055 odfvalALT 19056 odval 19057 telgsumfzslem 19504 telgsumfzs 19505 psrval 21028 psrass1lemOLD 21053 psrass1lem 21056 mpfrcl 21205 evlsval 21206 evls1fval 21395 fsum2cn 23940 iunmbl2 24626 dvfsumlem1 25095 itgsubst 25118 q1pval 25223 r1pval 25226 rlimcnp2 26021 fsumdvdscom 26239 fsumdvdsmul 26249 ttgval 27140 fsumiunle 31045 msrfval 33399 poimirlem1 35705 poimirlem3 35707 poimirlem4 35708 poimirlem5 35709 poimirlem6 35710 poimirlem7 35711 poimirlem8 35712 poimirlem10 35714 poimirlem11 35715 poimirlem12 35716 poimirlem15 35719 poimirlem16 35720 poimirlem17 35721 poimirlem18 35722 poimirlem19 35723 poimirlem20 35724 poimirlem21 35725 poimirlem22 35726 poimirlem23 35727 poimirlem24 35728 poimirlem25 35729 poimirlem26 35730 poimirlem27 35731 poimirlem28 35732 cdleme31snd 38327 cdlemeg46c 38454 cdlemkid2 38865 cdlemk46 38889 cdlemk53b 38897 cdlemk53 38898 monotuz 40679 oddcomabszz 40682 fnwe2val 40790 fnwe2lem1 40791 fnwe2lem2 40792 mendval 40924 sumsnd 42458 climinf2mpt 43145 climinfmpt 43146 sge0f1o 43810 rnghmval 45337 dmmpossx2 45560 |
Copyright terms: Public domain | W3C validator |