Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.) |
Ref | Expression |
---|---|
csbeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
csbeq1d | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | csbeq1 3835 | . 2 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⦋csb 3832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sbc 3717 df-csb 3833 |
This theorem is referenced by: csbeq12dv 3841 csbco3g 4362 csbidm 4364 fmptcof 7002 mpomptsx 7904 dmmpossx 7906 fmpox 7907 ovmptss 7933 fmpoco 7935 xpf1o 8926 hsmexlem2 10183 iundom2g 10296 sumeq2ii 15405 summolem3 15426 summolem2a 15427 summo 15429 zsum 15430 fsum 15432 sumsnf 15455 fsumcnv 15485 fsumcom2 15486 fsumshftm 15493 fsum0diag2 15495 prodeq2ii 15623 prodmolem3 15643 prodmolem2a 15644 prodmo 15646 zprod 15647 fprod 15651 prodsn 15672 prodsnf 15674 fprodcnv 15693 fprodcom2 15694 bpolylem 15758 bpolyval 15759 ruclem1 15940 pcmpt 16593 gsumvalx 18360 odfval 19140 odfvalALT 19141 odval 19142 telgsumfzslem 19589 telgsumfzs 19590 psrval 21118 psrass1lemOLD 21143 psrass1lem 21146 mpfrcl 21295 evlsval 21296 evls1fval 21485 fsum2cn 24034 iunmbl2 24721 dvfsumlem1 25190 itgsubst 25213 q1pval 25318 r1pval 25321 rlimcnp2 26116 fsumdvdscom 26334 fsumdvdsmul 26344 ttgvalOLD 27237 fsumiunle 31143 msrfval 33499 poimirlem1 35778 poimirlem3 35780 poimirlem4 35781 poimirlem5 35782 poimirlem6 35783 poimirlem7 35784 poimirlem8 35785 poimirlem10 35787 poimirlem11 35788 poimirlem12 35789 poimirlem15 35792 poimirlem16 35793 poimirlem17 35794 poimirlem18 35795 poimirlem19 35796 poimirlem20 35797 poimirlem21 35798 poimirlem22 35799 poimirlem23 35800 poimirlem24 35801 poimirlem25 35802 poimirlem26 35803 poimirlem27 35804 poimirlem28 35805 cdleme31snd 38400 cdlemeg46c 38527 cdlemkid2 38938 cdlemk46 38962 cdlemk53b 38970 cdlemk53 38971 monotuz 40763 oddcomabszz 40766 fnwe2val 40874 fnwe2lem1 40875 fnwe2lem2 40876 mendval 41008 sumsnd 42569 climinf2mpt 43255 climinfmpt 43256 sge0f1o 43920 rnghmval 45449 dmmpossx2 45672 |
Copyright terms: Public domain | W3C validator |