MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbiegf Structured version   Visualization version   GIF version

Theorem csbiegf 3878
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbiegf.1 (𝐴𝑉𝑥𝐶)
csbiegf.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbiegf (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbiegf
StepHypRef Expression
1 csbiegf.2 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
21ax-gen 1796 . 2 𝑥(𝑥 = 𝐴𝐵 = 𝐶)
3 csbiegf.1 . . 3 (𝐴𝑉𝑥𝐶)
4 csbiebt 3874 . . 3 ((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
53, 4mpdan 687 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
62, 5mpbii 233 1 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  wcel 2111  wnfc 2879  csb 3845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-v 3438  df-sbc 3737  df-csb 3846
This theorem is referenced by:  csbief  3879  sbcco3gw  4374  sbcco3g  4379  csbco3g  4380  fmptcof  7069  fmpoco  8031  sumsnf  15656  prodsn  15875  prodsnf  15877  bpolylem  15961  pcmpt  16810  chfacfpmmulfsupp  22784  elmptrab  23748  dvfsumrlim3  25973  itgsubstlem  25988  itgsubst  25989  ifeqeqx  32529  disjunsn  32581  sbcaltop  36032  unirep  37760  cdleme31so  40484  cdleme31sn  40485  cdleme31sn1  40486  cdleme31se  40487  cdleme31se2  40488  cdleme31sc  40489  cdleme31sde  40490  cdleme31sn2  40494  cdlemeg47rv2  40615  cdlemk41  41025  monotuz  43039  oddcomabszz  43042
  Copyright terms: Public domain W3C validator