| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbiegf | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| csbiegf.1 | ⊢ (𝐴 ∈ 𝑉 → Ⅎ𝑥𝐶) |
| csbiegf.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbiegf | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbiegf.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 2 | 1 | ax-gen 1794 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) |
| 3 | csbiegf.1 | . . 3 ⊢ (𝐴 ∈ 𝑉 → Ⅎ𝑥𝐶) | |
| 4 | csbiebt 3901 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐶) → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) | |
| 5 | 3, 4 | mpdan 687 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
| 6 | 2, 5 | mpbii 233 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 = wceq 1539 ∈ wcel 2107 Ⅎwnfc 2882 ⦋csb 3872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-v 3459 df-sbc 3764 df-csb 3873 |
| This theorem is referenced by: csbief 3906 sbcco3gw 4398 sbcco3g 4403 csbco3g 4404 fmptcof 7117 fmpoco 8089 sumsnf 15748 prodsn 15967 prodsnf 15969 bpolylem 16053 pcmpt 16899 chfacfpmmulfsupp 22788 elmptrab 23752 dvfsumrlim3 25979 itgsubstlem 25994 itgsubst 25995 ifeqeqx 32457 disjunsn 32509 sbcaltop 35928 unirep 37667 cdleme31so 40327 cdleme31sn 40328 cdleme31sn1 40329 cdleme31se 40330 cdleme31se2 40331 cdleme31sc 40332 cdleme31sde 40333 cdleme31sn2 40337 cdlemeg47rv2 40458 cdlemk41 40868 monotuz 42897 oddcomabszz 42900 |
| Copyright terms: Public domain | W3C validator |