| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbiegf | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| csbiegf.1 | ⊢ (𝐴 ∈ 𝑉 → Ⅎ𝑥𝐶) |
| csbiegf.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbiegf | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbiegf.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) |
| 3 | csbiegf.1 | . . 3 ⊢ (𝐴 ∈ 𝑉 → Ⅎ𝑥𝐶) | |
| 4 | csbiebt 3882 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐶) → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) | |
| 5 | 3, 4 | mpdan 687 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
| 6 | 2, 5 | mpbii 233 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 ⦋csb 3853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3440 df-sbc 3745 df-csb 3854 |
| This theorem is referenced by: csbief 3887 sbcco3gw 4378 sbcco3g 4383 csbco3g 4384 fmptcof 7068 fmpoco 8035 sumsnf 15668 prodsn 15887 prodsnf 15889 bpolylem 15973 pcmpt 16822 chfacfpmmulfsupp 22766 elmptrab 23730 dvfsumrlim3 25956 itgsubstlem 25971 itgsubst 25972 ifeqeqx 32504 disjunsn 32556 sbcaltop 35954 unirep 37693 cdleme31so 40358 cdleme31sn 40359 cdleme31sn1 40360 cdleme31se 40361 cdleme31se2 40362 cdleme31sc 40363 cdleme31sde 40364 cdleme31sn2 40368 cdlemeg47rv2 40489 cdlemk41 40899 monotuz 42914 oddcomabszz 42917 |
| Copyright terms: Public domain | W3C validator |