MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbiegf Structured version   Visualization version   GIF version

Theorem csbiegf 3824
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbiegf.1 (𝐴𝑉𝑥𝐶)
csbiegf.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbiegf (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbiegf
StepHypRef Expression
1 csbiegf.2 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
21ax-gen 1802 . 2 𝑥(𝑥 = 𝐴𝐵 = 𝐶)
3 csbiegf.1 . . 3 (𝐴𝑉𝑥𝐶)
4 csbiebt 3820 . . 3 ((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
53, 4mpdan 687 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
62, 5mpbii 236 1 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1540   = wceq 1542  wcel 2114  wnfc 2880  csb 3791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-v 3401  df-sbc 3682  df-csb 3792
This theorem is referenced by:  csbief  3825  sbcco3gw  4313  sbcco3g  4318  csbco3g  4319  fmptcof  6905  fmpoco  7819  sumsnf  15195  prodsn  15411  prodsnf  15413  bpolylem  15497  pcmpt  16331  chfacfpmmulfsupp  21617  elmptrab  22581  dvfsumrlim3  24788  itgsubstlem  24803  itgsubst  24804  ifeqeqx  30462  disjunsn  30510  sbcaltop  33929  unirep  35517  cdleme31so  38039  cdleme31sn  38040  cdleme31sn1  38041  cdleme31se  38042  cdleme31se2  38043  cdleme31sc  38044  cdleme31sde  38045  cdleme31sn2  38049  cdlemeg47rv2  38170  cdlemk41  38580  monotuz  40358  oddcomabszz  40361
  Copyright terms: Public domain W3C validator