| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbiegf | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| csbiegf.1 | ⊢ (𝐴 ∈ 𝑉 → Ⅎ𝑥𝐶) |
| csbiegf.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbiegf | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbiegf.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 2 | 1 | ax-gen 1796 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) |
| 3 | csbiegf.1 | . . 3 ⊢ (𝐴 ∈ 𝑉 → Ⅎ𝑥𝐶) | |
| 4 | csbiebt 3877 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐶) → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) | |
| 5 | 3, 4 | mpdan 687 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
| 6 | 2, 5 | mpbii 233 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2110 Ⅎwnfc 2877 ⦋csb 3848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-v 3436 df-sbc 3740 df-csb 3849 |
| This theorem is referenced by: csbief 3882 sbcco3gw 4373 sbcco3g 4378 csbco3g 4379 fmptcof 7058 fmpoco 8020 sumsnf 15642 prodsn 15861 prodsnf 15863 bpolylem 15947 pcmpt 16796 chfacfpmmulfsupp 22771 elmptrab 23735 dvfsumrlim3 25960 itgsubstlem 25975 itgsubst 25976 ifeqeqx 32512 disjunsn 32564 sbcaltop 35994 unirep 37733 cdleme31so 40397 cdleme31sn 40398 cdleme31sn1 40399 cdleme31se 40400 cdleme31se2 40401 cdleme31sc 40402 cdleme31sde 40403 cdleme31sn2 40407 cdlemeg47rv2 40528 cdlemk41 40938 monotuz 42953 oddcomabszz 42956 |
| Copyright terms: Public domain | W3C validator |