MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbiegf Structured version   Visualization version   GIF version

Theorem csbiegf 3923
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbiegf.1 (𝐴𝑉𝑥𝐶)
csbiegf.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbiegf (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbiegf
StepHypRef Expression
1 csbiegf.2 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
21ax-gen 1790 . 2 𝑥(𝑥 = 𝐴𝐵 = 𝐶)
3 csbiegf.1 . . 3 (𝐴𝑉𝑥𝐶)
4 csbiebt 3919 . . 3 ((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
53, 4mpdan 686 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
62, 5mpbii 232 1 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1532   = wceq 1534  wcel 2099  wnfc 2878  csb 3889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-v 3471  df-sbc 3775  df-csb 3890
This theorem is referenced by:  csbief  3924  sbcco3gw  4418  sbcco3g  4423  csbco3g  4424  fmptcof  7133  fmpoco  8094  sumsnf  15713  prodsn  15930  prodsnf  15932  bpolylem  16016  pcmpt  16852  chfacfpmmulfsupp  22752  elmptrab  23718  dvfsumrlim3  25955  itgsubstlem  25970  itgsubst  25971  ifeqeqx  32318  disjunsn  32369  sbcaltop  35513  unirep  37122  cdleme31so  39789  cdleme31sn  39790  cdleme31sn1  39791  cdleme31se  39792  cdleme31se2  39793  cdleme31sc  39794  cdleme31sde  39795  cdleme31sn2  39799  cdlemeg47rv2  39920  cdlemk41  40330  monotuz  42284  oddcomabszz  42287
  Copyright terms: Public domain W3C validator