![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbiegf | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
csbiegf.1 | ⊢ (𝐴 ∈ 𝑉 → Ⅎ𝑥𝐶) |
csbiegf.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbiegf | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbiegf.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
2 | 1 | ax-gen 1791 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) |
3 | csbiegf.1 | . . 3 ⊢ (𝐴 ∈ 𝑉 → Ⅎ𝑥𝐶) | |
4 | csbiebt 3937 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐶) → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) | |
5 | 3, 4 | mpdan 687 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
6 | 2, 5 | mpbii 233 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1534 = wceq 1536 ∈ wcel 2105 Ⅎwnfc 2887 ⦋csb 3907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-v 3479 df-sbc 3791 df-csb 3908 |
This theorem is referenced by: csbief 3942 sbcco3gw 4430 sbcco3g 4435 csbco3g 4436 fmptcof 7149 fmpoco 8118 sumsnf 15775 prodsn 15994 prodsnf 15996 bpolylem 16080 pcmpt 16925 chfacfpmmulfsupp 22884 elmptrab 23850 dvfsumrlim3 26088 itgsubstlem 26103 itgsubst 26104 ifeqeqx 32562 disjunsn 32613 sbcaltop 35962 unirep 37700 cdleme31so 40361 cdleme31sn 40362 cdleme31sn1 40363 cdleme31se 40364 cdleme31se2 40365 cdleme31sc 40366 cdleme31sde 40367 cdleme31sn2 40371 cdlemeg47rv2 40492 cdlemk41 40902 monotuz 42929 oddcomabszz 42932 |
Copyright terms: Public domain | W3C validator |