Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbcom2fi Structured version   Visualization version   GIF version

Theorem csbcom2fi 38088
Description: Commutative law for double class substitution in a class, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 4-Jun-2019.)
Hypotheses
Ref Expression
csbcom2fi.1 𝐴 ∈ V
csbcom2fi.2 𝑦𝐴
csbcom2fi.3 𝐴 / 𝑥𝐵 = 𝐶
csbcom2fi.4 𝐴 / 𝑥𝐷 = 𝐸
Assertion
Ref Expression
csbcom2fi 𝐴 / 𝑥𝐵 / 𝑦𝐷 = 𝐶 / 𝑦𝐸
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)

Proof of Theorem csbcom2fi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3922 . . . . 5 𝐴 / 𝑥𝐵 / 𝑦𝐷 = {𝑧[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐷}
21eqabri 2888 . . . 4 (𝑧𝐴 / 𝑥𝐵 / 𝑦𝐷[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐷)
3 df-csb 3922 . . . . . 6 𝐵 / 𝑦𝐷 = {𝑧[𝐵 / 𝑦]𝑧𝐷}
43eqabri 2888 . . . . 5 (𝑧𝐵 / 𝑦𝐷[𝐵 / 𝑦]𝑧𝐷)
54sbcbii 3865 . . . 4 ([𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐷[𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐷)
62, 5bitri 275 . . 3 (𝑧𝐴 / 𝑥𝐵 / 𝑦𝐷[𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐷)
7 csbcom2fi.1 . . . 4 𝐴 ∈ V
8 csbcom2fi.2 . . . 4 𝑦𝐴
9 csbcom2fi.3 . . . 4 𝐴 / 𝑥𝐵 = 𝐶
10 df-csb 3922 . . . . . 6 𝐴 / 𝑥𝐷 = {𝑧[𝐴 / 𝑥]𝑧𝐷}
1110eqabri 2888 . . . . 5 (𝑧𝐴 / 𝑥𝐷[𝐴 / 𝑥]𝑧𝐷)
12 csbcom2fi.4 . . . . . 6 𝐴 / 𝑥𝐷 = 𝐸
1312eleq2i 2836 . . . . 5 (𝑧𝐴 / 𝑥𝐷𝑧𝐸)
1411, 13bitr3i 277 . . . 4 ([𝐴 / 𝑥]𝑧𝐷𝑧𝐸)
157, 8, 9, 14sbccom2fi 38087 . . 3 ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐷[𝐶 / 𝑦]𝑧𝐸)
16 sbcel2 4441 . . 3 ([𝐶 / 𝑦]𝑧𝐸𝑧𝐶 / 𝑦𝐸)
176, 15, 163bitri 297 . 2 (𝑧𝐴 / 𝑥𝐵 / 𝑦𝐷𝑧𝐶 / 𝑦𝐸)
1817eqriv 2737 1 𝐴 / 𝑥𝐵 / 𝑦𝐷 = 𝐶 / 𝑦𝐸
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wnfc 2893  Vcvv 3488  [wsbc 3804  csb 3921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-nul 4353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator