MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel2 Structured version   Visualization version   GIF version

Theorem sbcel2 4367
Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcel2 ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem sbcel2
StepHypRef Expression
1 sbcel12 4360 . . 3 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
2 csbconstg 3865 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝐵 = 𝐵)
32eleq1d 2818 . . 3 (𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶𝐵𝐴 / 𝑥𝐶))
41, 3bitrid 283 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶))
5 sbcex 3747 . . . 4 ([𝐴 / 𝑥]𝐵𝐶𝐴 ∈ V)
65con3i 154 . . 3 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝐵𝐶)
7 noel 4287 . . . 4 ¬ 𝐵 ∈ ∅
8 csbprc 4358 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
98eleq2d 2819 . . . 4 𝐴 ∈ V → (𝐵𝐴 / 𝑥𝐶𝐵 ∈ ∅))
107, 9mtbiri 327 . . 3 𝐴 ∈ V → ¬ 𝐵𝐴 / 𝑥𝐶)
116, 102falsed 376 . 2 𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶))
124, 11pm2.61i 182 1 ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2113  Vcvv 3437  [wsbc 3737  csb 3846  c0 4282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-nul 4283
This theorem is referenced by:  csbcom  4369  sbccsb  4385  sbnfc2  4388  csbab  4389  sbcssg  4469  csbuni  4888  csbxp  5720  csbdm  5841  issubc  17744  esum2dlem  34126  weiunlem2  36528  bj-sbeq  36966  bj-sbceqgALT  36967  f1omptsnlem  37401  csbcom2fi  38188  sbcssgVD  44999  csbingVD  45000  csbunigVD  45014  disjinfi  45313  iccelpart  47557
  Copyright terms: Public domain W3C validator