MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel2 Structured version   Visualization version   GIF version

Theorem sbcel2 4384
Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcel2 ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem sbcel2
StepHypRef Expression
1 sbcel12 4377 . . 3 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
2 csbconstg 3884 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝐵 = 𝐵)
32eleq1d 2814 . . 3 (𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶𝐵𝐴 / 𝑥𝐶))
41, 3bitrid 283 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶))
5 sbcex 3766 . . . 4 ([𝐴 / 𝑥]𝐵𝐶𝐴 ∈ V)
65con3i 154 . . 3 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝐵𝐶)
7 noel 4304 . . . 4 ¬ 𝐵 ∈ ∅
8 csbprc 4375 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
98eleq2d 2815 . . . 4 𝐴 ∈ V → (𝐵𝐴 / 𝑥𝐶𝐵 ∈ ∅))
107, 9mtbiri 327 . . 3 𝐴 ∈ V → ¬ 𝐵𝐴 / 𝑥𝐶)
116, 102falsed 376 . 2 𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶))
124, 11pm2.61i 182 1 ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2109  Vcvv 3450  [wsbc 3756  csb 3865  c0 4299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-nul 4300
This theorem is referenced by:  csbcom  4386  sbccsb  4402  sbnfc2  4405  csbab  4406  sbcssg  4486  csbuni  4903  csbxp  5741  csbdm  5864  issubc  17804  esum2dlem  34089  weiunlem2  36458  bj-sbeq  36896  bj-sbceqgALT  36897  f1omptsnlem  37331  csbcom2fi  38129  sbcssgVD  44879  csbingVD  44880  csbunigVD  44894  disjinfi  45193  iccelpart  47438
  Copyright terms: Public domain W3C validator