| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcel2 | Structured version Visualization version GIF version | ||
| Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.) (Revised by NM, 18-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbcel2 | ⊢ ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcel12 4361 | . . 3 ⊢ ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
| 2 | csbconstg 3869 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
| 3 | 2 | eleq1d 2816 | . . 3 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
| 4 | 1, 3 | bitrid 283 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
| 5 | sbcex 3751 | . . . 4 ⊢ ([𝐴 / 𝑥]𝐵 ∈ 𝐶 → 𝐴 ∈ V) | |
| 6 | 5 | con3i 154 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝐵 ∈ 𝐶) |
| 7 | noel 4288 | . . . 4 ⊢ ¬ 𝐵 ∈ ∅ | |
| 8 | csbprc 4359 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐶 = ∅) | |
| 9 | 8 | eleq2d 2817 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵 ∈ ∅)) |
| 10 | 7, 9 | mtbiri 327 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) |
| 11 | 6, 10 | 2falsed 376 | . 2 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
| 12 | 4, 11 | pm2.61i 182 | 1 ⊢ ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2111 Vcvv 3436 [wsbc 3741 ⦋csb 3850 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-nul 4284 |
| This theorem is referenced by: csbcom 4370 sbccsb 4386 sbnfc2 4389 csbab 4390 sbcssg 4470 csbuni 4888 csbxp 5716 csbdm 5837 issubc 17739 esum2dlem 34100 weiunlem2 36496 bj-sbeq 36934 bj-sbceqgALT 36935 f1omptsnlem 37369 csbcom2fi 38167 sbcssgVD 44914 csbingVD 44915 csbunigVD 44929 disjinfi 45228 iccelpart 47463 |
| Copyright terms: Public domain | W3C validator |