![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcel2 | Structured version Visualization version GIF version |
Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.) (Revised by NM, 18-Aug-2018.) |
Ref | Expression |
---|---|
sbcel2 | ⊢ ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcel12 4434 | . . 3 ⊢ ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
2 | csbconstg 3940 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
3 | 2 | eleq1d 2829 | . . 3 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
4 | 1, 3 | bitrid 283 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
5 | sbcex 3814 | . . . 4 ⊢ ([𝐴 / 𝑥]𝐵 ∈ 𝐶 → 𝐴 ∈ V) | |
6 | 5 | con3i 154 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝐵 ∈ 𝐶) |
7 | noel 4360 | . . . 4 ⊢ ¬ 𝐵 ∈ ∅ | |
8 | csbprc 4432 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐶 = ∅) | |
9 | 8 | eleq2d 2830 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵 ∈ ∅)) |
10 | 7, 9 | mtbiri 327 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) |
11 | 6, 10 | 2falsed 376 | . 2 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
12 | 4, 11 | pm2.61i 182 | 1 ⊢ ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2108 Vcvv 3488 [wsbc 3804 ⦋csb 3921 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-nul 4353 |
This theorem is referenced by: csbcom 4443 sbccsb 4459 sbnfc2 4462 csbab 4463 sbcssg 4543 csbuni 4960 csbxp 5799 csbdm 5922 issubc 17899 esum2dlem 34056 weiunlem2 36429 bj-sbeq 36867 bj-sbceqgALT 36868 f1omptsnlem 37302 csbcom2fi 38088 sbcssgVD 44854 csbingVD 44855 csbunigVD 44869 disjinfi 45099 iccelpart 47307 |
Copyright terms: Public domain | W3C validator |