![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcel2 | Structured version Visualization version GIF version |
Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.) (Revised by NM, 18-Aug-2018.) |
Ref | Expression |
---|---|
sbcel2 | ⊢ ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcel12 4409 | . . 3 ⊢ ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
2 | csbconstg 3911 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
3 | 2 | eleq1d 2814 | . . 3 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
4 | 1, 3 | bitrid 283 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
5 | sbcex 3786 | . . . 4 ⊢ ([𝐴 / 𝑥]𝐵 ∈ 𝐶 → 𝐴 ∈ V) | |
6 | 5 | con3i 154 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝐵 ∈ 𝐶) |
7 | noel 4331 | . . . 4 ⊢ ¬ 𝐵 ∈ ∅ | |
8 | csbprc 4407 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐶 = ∅) | |
9 | 8 | eleq2d 2815 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵 ∈ ∅)) |
10 | 7, 9 | mtbiri 327 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) |
11 | 6, 10 | 2falsed 376 | . 2 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
12 | 4, 11 | pm2.61i 182 | 1 ⊢ ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2099 Vcvv 3471 [wsbc 3776 ⦋csb 3892 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-nul 4324 |
This theorem is referenced by: csbcom 4418 sbccsb 4434 sbnfc2 4437 csbab 4438 sbcssg 4524 csbuni 4939 csbxp 5777 csbdm 5900 issubc 17821 esum2dlem 33711 bj-sbeq 36379 bj-sbceqgALT 36380 f1omptsnlem 36815 csbcom2fi 37601 sbcssgVD 44322 csbingVD 44323 csbunigVD 44337 disjinfi 44565 iccelpart 46773 |
Copyright terms: Public domain | W3C validator |