| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbvarg | Structured version Visualization version GIF version | ||
| Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbvarg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3480 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | df-csb 3875 | . . . . . . 7 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝑥} | |
| 3 | sbcel2gv 3832 | . . . . . . . 8 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
| 4 | 3 | eqabcdv 2869 | . . . . . . 7 ⊢ (𝑦 ∈ V → {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝑥} = 𝑦) |
| 5 | 2, 4 | eqtrid 2782 | . . . . . 6 ⊢ (𝑦 ∈ V → ⦋𝑦 / 𝑥⦌𝑥 = 𝑦) |
| 6 | 5 | elv 3464 | . . . . 5 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = 𝑦 |
| 7 | 6 | csbeq2i 3882 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝑥 = ⦋𝐴 / 𝑦⦌𝑦 |
| 8 | csbcow 3889 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝑥 = ⦋𝐴 / 𝑥⦌𝑥 | |
| 9 | df-csb 3875 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌𝑦 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} | |
| 10 | 7, 8, 9 | 3eqtr3i 2766 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝑥 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} |
| 11 | sbcel2gv 3832 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴)) | |
| 12 | 11 | eqabcdv 2869 | . . 3 ⊢ (𝐴 ∈ V → {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} = 𝐴) |
| 13 | 10, 12 | eqtrid 2782 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
| 14 | 1, 13 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {cab 2713 Vcvv 3459 [wsbc 3765 ⦋csb 3874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-sbc 3766 df-csb 3875 |
| This theorem is referenced by: csbvargi 4410 sbccsb2 4412 2nreu 4419 csbfv 6926 ixpsnval 8914 csbwrdg 14562 swrdspsleq 14683 prmgaplem7 17077 telgsums 19974 ixpsnbasval 21166 scmatscm 22451 pm2mpf1lem 22732 pm2mpcoe1 22738 idpm2idmp 22739 pm2mpmhmlem2 22757 monmat2matmon 22762 pm2mp 22763 fvmptnn04if 22787 chfacfscmulfsupp 22797 cayhamlem4 22826 divcncf 25400 opsbc2ie 32457 esum2dlem 34123 relowlpssretop 37382 rdgeqoa 37388 renegclALT 38981 cdlemk40 40936 tfsconcatfv 43365 iscard4 43557 minregex 43558 cotrclrcl 43766 frege124d 43785 frege70 43957 frege72 43959 frege77 43964 frege91 43978 frege92 43979 frege116 44003 frege118 44005 frege120 44007 rusbcALT 44463 onfrALTlem5 44567 onfrALTlem4 44568 onfrALTlem5VD 44909 iccelpart 47447 ply1mulgsumlem4 48365 |
| Copyright terms: Public domain | W3C validator |