MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbvarg Structured version   Visualization version   GIF version

Theorem csbvarg 4387
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbvarg (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)

Proof of Theorem csbvarg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐴𝑉𝐴 ∈ V)
2 df-csb 3854 . . . . . . 7 𝑦 / 𝑥𝑥 = {𝑧[𝑦 / 𝑥]𝑧𝑥}
3 sbcel2gv 3811 . . . . . . . 8 (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧𝑥𝑧𝑦))
43eqabcdv 2862 . . . . . . 7 (𝑦 ∈ V → {𝑧[𝑦 / 𝑥]𝑧𝑥} = 𝑦)
52, 4eqtrid 2776 . . . . . 6 (𝑦 ∈ V → 𝑦 / 𝑥𝑥 = 𝑦)
65elv 3443 . . . . 5 𝑦 / 𝑥𝑥 = 𝑦
76csbeq2i 3861 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑦𝑦
8 csbcow 3868 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑥𝑥
9 df-csb 3854 . . . 4 𝐴 / 𝑦𝑦 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
107, 8, 93eqtr3i 2760 . . 3 𝐴 / 𝑥𝑥 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
11 sbcel2gv 3811 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧𝑦𝑧𝐴))
1211eqabcdv 2862 . . 3 (𝐴 ∈ V → {𝑧[𝐴 / 𝑦]𝑧𝑦} = 𝐴)
1310, 12eqtrid 2776 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
141, 13syl 17 1 (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3438  [wsbc 3744  csb 3853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-sbc 3745  df-csb 3854
This theorem is referenced by:  csbvargi  4388  sbccsb2  4390  2nreu  4397  csbfv  6874  ixpsnval  8834  csbwrdg  14469  swrdspsleq  14590  prmgaplem7  16987  telgsums  19890  ixpsnbasval  21130  scmatscm  22416  pm2mpf1lem  22697  pm2mpcoe1  22703  idpm2idmp  22704  pm2mpmhmlem2  22722  monmat2matmon  22727  pm2mp  22728  fvmptnn04if  22752  chfacfscmulfsupp  22762  cayhamlem4  22791  divcncf  25364  opsbc2ie  32438  esum2dlem  34058  relowlpssretop  37337  rdgeqoa  37343  renegclALT  38941  cdlemk40  40896  tfsconcatfv  43314  iscard4  43506  minregex  43507  cotrclrcl  43715  frege124d  43734  frege70  43906  frege72  43908  frege77  43913  frege91  43927  frege92  43928  frege116  43952  frege118  43954  frege120  43956  rusbcALT  44412  onfrALTlem5  44516  onfrALTlem4  44517  onfrALTlem5VD  44858  iccelpart  47418  ply1mulgsumlem4  48362
  Copyright terms: Public domain W3C validator