MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbvarg Structured version   Visualization version   GIF version

Theorem csbvarg 4409
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbvarg (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)

Proof of Theorem csbvarg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3480 . 2 (𝐴𝑉𝐴 ∈ V)
2 df-csb 3875 . . . . . . 7 𝑦 / 𝑥𝑥 = {𝑧[𝑦 / 𝑥]𝑧𝑥}
3 sbcel2gv 3832 . . . . . . . 8 (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧𝑥𝑧𝑦))
43eqabcdv 2869 . . . . . . 7 (𝑦 ∈ V → {𝑧[𝑦 / 𝑥]𝑧𝑥} = 𝑦)
52, 4eqtrid 2782 . . . . . 6 (𝑦 ∈ V → 𝑦 / 𝑥𝑥 = 𝑦)
65elv 3464 . . . . 5 𝑦 / 𝑥𝑥 = 𝑦
76csbeq2i 3882 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑦𝑦
8 csbcow 3889 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑥𝑥
9 df-csb 3875 . . . 4 𝐴 / 𝑦𝑦 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
107, 8, 93eqtr3i 2766 . . 3 𝐴 / 𝑥𝑥 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
11 sbcel2gv 3832 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧𝑦𝑧𝐴))
1211eqabcdv 2869 . . 3 (𝐴 ∈ V → {𝑧[𝐴 / 𝑦]𝑧𝑦} = 𝐴)
1310, 12eqtrid 2782 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
141, 13syl 17 1 (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {cab 2713  Vcvv 3459  [wsbc 3765  csb 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-sbc 3766  df-csb 3875
This theorem is referenced by:  csbvargi  4410  sbccsb2  4412  2nreu  4419  csbfv  6926  ixpsnval  8914  csbwrdg  14562  swrdspsleq  14683  prmgaplem7  17077  telgsums  19974  ixpsnbasval  21166  scmatscm  22451  pm2mpf1lem  22732  pm2mpcoe1  22738  idpm2idmp  22739  pm2mpmhmlem2  22757  monmat2matmon  22762  pm2mp  22763  fvmptnn04if  22787  chfacfscmulfsupp  22797  cayhamlem4  22826  divcncf  25400  opsbc2ie  32457  esum2dlem  34123  relowlpssretop  37382  rdgeqoa  37388  renegclALT  38981  cdlemk40  40936  tfsconcatfv  43365  iscard4  43557  minregex  43558  cotrclrcl  43766  frege124d  43785  frege70  43957  frege72  43959  frege77  43964  frege91  43978  frege92  43979  frege116  44003  frege118  44005  frege120  44007  rusbcALT  44463  onfrALTlem5  44567  onfrALTlem4  44568  onfrALTlem5VD  44909  iccelpart  47447  ply1mulgsumlem4  48365
  Copyright terms: Public domain W3C validator