MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbvarg Structured version   Visualization version   GIF version

Theorem csbvarg 4457
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbvarg (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)

Proof of Theorem csbvarg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3509 . 2 (𝐴𝑉𝐴 ∈ V)
2 df-csb 3922 . . . . . . 7 𝑦 / 𝑥𝑥 = {𝑧[𝑦 / 𝑥]𝑧𝑥}
3 sbcel2gv 3876 . . . . . . . 8 (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧𝑥𝑧𝑦))
43eqabcdv 2879 . . . . . . 7 (𝑦 ∈ V → {𝑧[𝑦 / 𝑥]𝑧𝑥} = 𝑦)
52, 4eqtrid 2792 . . . . . 6 (𝑦 ∈ V → 𝑦 / 𝑥𝑥 = 𝑦)
65elv 3493 . . . . 5 𝑦 / 𝑥𝑥 = 𝑦
76csbeq2i 3929 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑦𝑦
8 csbcow 3936 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑥𝑥
9 df-csb 3922 . . . 4 𝐴 / 𝑦𝑦 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
107, 8, 93eqtr3i 2776 . . 3 𝐴 / 𝑥𝑥 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
11 sbcel2gv 3876 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧𝑦𝑧𝐴))
1211eqabcdv 2879 . . 3 (𝐴 ∈ V → {𝑧[𝐴 / 𝑦]𝑧𝑦} = 𝐴)
1310, 12eqtrid 2792 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
141, 13syl 17 1 (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488  [wsbc 3804  csb 3921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-sbc 3805  df-csb 3922
This theorem is referenced by:  csbvargi  4458  sbccsb2  4460  2nreu  4467  csbfv  6970  ixpsnval  8958  csbwrdg  14592  swrdspsleq  14713  prmgaplem7  17104  telgsums  20035  ixpsnbasval  21238  scmatscm  22540  pm2mpf1lem  22821  pm2mpcoe1  22827  idpm2idmp  22828  pm2mpmhmlem2  22846  monmat2matmon  22851  pm2mp  22852  fvmptnn04if  22876  chfacfscmulfsupp  22886  cayhamlem4  22915  divcncf  25501  opsbc2ie  32504  esum2dlem  34056  relowlpssretop  37330  rdgeqoa  37336  renegclALT  38919  cdlemk40  40874  tfsconcatfv  43303  iscard4  43495  minregex  43496  cotrclrcl  43704  frege124d  43723  frege70  43895  frege72  43897  frege77  43902  frege91  43916  frege92  43917  frege116  43941  frege118  43943  frege120  43945  rusbcALT  44408  onfrALTlem5  44513  onfrALTlem4  44514  onfrALTlem5VD  44856  iccelpart  47307  ply1mulgsumlem4  48118
  Copyright terms: Public domain W3C validator