MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbvarg Structured version   Visualization version   GIF version

Theorem csbvarg 4365
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbvarg (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)

Proof of Theorem csbvarg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3450 . 2 (𝐴𝑉𝐴 ∈ V)
2 df-csb 3833 . . . . . . 7 𝑦 / 𝑥𝑥 = {𝑧[𝑦 / 𝑥]𝑧𝑥}
3 sbcel2gv 3788 . . . . . . . 8 (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧𝑥𝑧𝑦))
43abbi1dv 2878 . . . . . . 7 (𝑦 ∈ V → {𝑧[𝑦 / 𝑥]𝑧𝑥} = 𝑦)
52, 4eqtrid 2790 . . . . . 6 (𝑦 ∈ V → 𝑦 / 𝑥𝑥 = 𝑦)
65elv 3438 . . . . 5 𝑦 / 𝑥𝑥 = 𝑦
76csbeq2i 3840 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑦𝑦
8 csbcow 3847 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑥𝑥
9 df-csb 3833 . . . 4 𝐴 / 𝑦𝑦 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
107, 8, 93eqtr3i 2774 . . 3 𝐴 / 𝑥𝑥 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
11 sbcel2gv 3788 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧𝑦𝑧𝐴))
1211abbi1dv 2878 . . 3 (𝐴 ∈ V → {𝑧[𝐴 / 𝑦]𝑧𝑦} = 𝐴)
1310, 12eqtrid 2790 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
141, 13syl 17 1 (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {cab 2715  Vcvv 3432  [wsbc 3716  csb 3832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-sbc 3717  df-csb 3833
This theorem is referenced by:  csbvargi  4366  sbccsb2  4368  2nreu  4375  csbfv  6819  ixpsnval  8688  csbwrdg  14247  swrdspsleq  14378  prmgaplem7  16758  telgsums  19594  ixpsnbasval  20480  scmatscm  21662  pm2mpf1lem  21943  pm2mpcoe1  21949  idpm2idmp  21950  pm2mpmhmlem2  21968  monmat2matmon  21973  pm2mp  21974  fvmptnn04if  21998  chfacfscmulfsupp  22008  cayhamlem4  22037  divcncf  24611  opsbc2ie  30824  esum2dlem  32060  relowlpssretop  35535  rdgeqoa  35541  renegclALT  36977  cdlemk40  38931  iscard4  41140  minregex  41141  cotrclrcl  41350  frege124d  41369  frege70  41541  frege72  41543  frege77  41548  frege91  41562  frege92  41563  frege116  41587  frege118  41589  frege120  41591  rusbcALT  42057  onfrALTlem5  42162  onfrALTlem4  42163  onfrALTlem5VD  42505  iccelpart  44885  ply1mulgsumlem4  45730
  Copyright terms: Public domain W3C validator