Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbvarg | Structured version Visualization version GIF version |
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbvarg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3449 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | df-csb 3838 | . . . . . . 7 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝑥} | |
3 | sbcel2gv 3793 | . . . . . . . 8 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
4 | 3 | abbi1dv 2880 | . . . . . . 7 ⊢ (𝑦 ∈ V → {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝑥} = 𝑦) |
5 | 2, 4 | eqtrid 2792 | . . . . . 6 ⊢ (𝑦 ∈ V → ⦋𝑦 / 𝑥⦌𝑥 = 𝑦) |
6 | 5 | elv 3437 | . . . . 5 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = 𝑦 |
7 | 6 | csbeq2i 3845 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝑥 = ⦋𝐴 / 𝑦⦌𝑦 |
8 | csbcow 3852 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝑥 = ⦋𝐴 / 𝑥⦌𝑥 | |
9 | df-csb 3838 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌𝑦 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} | |
10 | 7, 8, 9 | 3eqtr3i 2776 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝑥 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} |
11 | sbcel2gv 3793 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴)) | |
12 | 11 | abbi1dv 2880 | . . 3 ⊢ (𝐴 ∈ V → {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} = 𝐴) |
13 | 10, 12 | eqtrid 2792 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
14 | 1, 13 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 {cab 2717 Vcvv 3431 [wsbc 3720 ⦋csb 3837 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-sbc 3721 df-csb 3838 |
This theorem is referenced by: csbvargi 4372 sbccsb2 4374 2nreu 4381 csbfv 6816 ixpsnval 8671 csbwrdg 14245 swrdspsleq 14376 prmgaplem7 16756 telgsums 19592 ixpsnbasval 20478 scmatscm 21660 pm2mpf1lem 21941 pm2mpcoe1 21947 idpm2idmp 21948 pm2mpmhmlem2 21966 monmat2matmon 21971 pm2mp 21972 fvmptnn04if 21996 chfacfscmulfsupp 22006 cayhamlem4 22035 divcncf 24609 opsbc2ie 30820 esum2dlem 32056 relowlpssretop 35531 rdgeqoa 35537 renegclALT 36973 cdlemk40 38927 iscard4 41119 cotrclrcl 41320 frege124d 41339 frege70 41511 frege72 41513 frege77 41518 frege91 41532 frege92 41533 frege116 41557 frege118 41559 frege120 41561 rusbcALT 42027 onfrALTlem5 42132 onfrALTlem4 42133 onfrALTlem5VD 42475 iccelpart 44854 ply1mulgsumlem4 45699 |
Copyright terms: Public domain | W3C validator |