Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbvarg | Structured version Visualization version GIF version |
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbvarg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | df-csb 3829 | . . . . . . 7 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝑥} | |
3 | sbcel2gv 3784 | . . . . . . . 8 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
4 | 3 | abbi1dv 2877 | . . . . . . 7 ⊢ (𝑦 ∈ V → {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝑥} = 𝑦) |
5 | 2, 4 | eqtrid 2790 | . . . . . 6 ⊢ (𝑦 ∈ V → ⦋𝑦 / 𝑥⦌𝑥 = 𝑦) |
6 | 5 | elv 3428 | . . . . 5 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = 𝑦 |
7 | 6 | csbeq2i 3836 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝑥 = ⦋𝐴 / 𝑦⦌𝑦 |
8 | csbcow 3843 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝑥 = ⦋𝐴 / 𝑥⦌𝑥 | |
9 | df-csb 3829 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌𝑦 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} | |
10 | 7, 8, 9 | 3eqtr3i 2774 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝑥 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} |
11 | sbcel2gv 3784 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴)) | |
12 | 11 | abbi1dv 2877 | . . 3 ⊢ (𝐴 ∈ V → {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} = 𝐴) |
13 | 10, 12 | eqtrid 2790 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
14 | 1, 13 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {cab 2715 Vcvv 3422 [wsbc 3711 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: csbvargi 4363 sbccsb2 4365 2nreu 4372 csbfv 6801 ixpsnval 8646 csbwrdg 14175 swrdspsleq 14306 prmgaplem7 16686 telgsums 19509 ixpsnbasval 20393 scmatscm 21570 pm2mpf1lem 21851 pm2mpcoe1 21857 idpm2idmp 21858 pm2mpmhmlem2 21876 monmat2matmon 21881 pm2mp 21882 fvmptnn04if 21906 chfacfscmulfsupp 21916 cayhamlem4 21945 divcncf 24516 opsbc2ie 30725 esum2dlem 31960 relowlpssretop 35462 rdgeqoa 35468 renegclALT 36904 cdlemk40 38858 iscard4 41038 cotrclrcl 41239 frege124d 41258 frege70 41430 frege72 41432 frege77 41437 frege91 41451 frege92 41452 frege116 41476 frege118 41478 frege120 41480 rusbcALT 41946 onfrALTlem5 42051 onfrALTlem4 42052 onfrALTlem5VD 42394 iccelpart 44773 ply1mulgsumlem4 45618 |
Copyright terms: Public domain | W3C validator |