| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbvarg | Structured version Visualization version GIF version | ||
| Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbvarg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3459 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | df-csb 3848 | . . . . . . 7 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝑥} | |
| 3 | sbcel2gv 3805 | . . . . . . . 8 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
| 4 | 3 | eqabcdv 2867 | . . . . . . 7 ⊢ (𝑦 ∈ V → {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝑥} = 𝑦) |
| 5 | 2, 4 | eqtrid 2780 | . . . . . 6 ⊢ (𝑦 ∈ V → ⦋𝑦 / 𝑥⦌𝑥 = 𝑦) |
| 6 | 5 | elv 3443 | . . . . 5 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = 𝑦 |
| 7 | 6 | csbeq2i 3855 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝑥 = ⦋𝐴 / 𝑦⦌𝑦 |
| 8 | csbcow 3862 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝑥 = ⦋𝐴 / 𝑥⦌𝑥 | |
| 9 | df-csb 3848 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌𝑦 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} | |
| 10 | 7, 8, 9 | 3eqtr3i 2764 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝑥 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} |
| 11 | sbcel2gv 3805 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴)) | |
| 12 | 11 | eqabcdv 2867 | . . 3 ⊢ (𝐴 ∈ V → {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} = 𝐴) |
| 13 | 10, 12 | eqtrid 2780 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
| 14 | 1, 13 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {cab 2711 Vcvv 3438 [wsbc 3738 ⦋csb 3847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3440 df-sbc 3739 df-csb 3848 |
| This theorem is referenced by: csbvargi 4386 sbccsb2 4388 2nreu 4395 csbfv 6878 ixpsnval 8833 csbwrdg 14461 swrdspsleq 14583 prmgaplem7 16979 telgsums 19915 ixpsnbasval 21152 scmatscm 22438 pm2mpf1lem 22719 pm2mpcoe1 22725 idpm2idmp 22726 pm2mpmhmlem2 22744 monmat2matmon 22749 pm2mp 22750 fvmptnn04if 22774 chfacfscmulfsupp 22784 cayhamlem4 22813 divcncf 25385 opsbc2ie 32466 esum2dlem 34116 relowlpssretop 37419 rdgeqoa 37425 renegclALT 39072 cdlemk40 41026 tfsconcatfv 43448 iscard4 43640 minregex 43641 cotrclrcl 43849 frege124d 43868 frege70 44040 frege72 44042 frege77 44047 frege91 44061 frege92 44062 frege116 44086 frege118 44088 frege120 44090 rusbcALT 44545 onfrALTlem5 44649 onfrALTlem4 44650 onfrALTlem5VD 44991 iccelpart 47547 ply1mulgsumlem4 48504 |
| Copyright terms: Public domain | W3C validator |