MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbvarg Structured version   Visualization version   GIF version

Theorem csbvarg 4397
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbvarg (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)

Proof of Theorem csbvarg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3468 . 2 (𝐴𝑉𝐴 ∈ V)
2 df-csb 3863 . . . . . . 7 𝑦 / 𝑥𝑥 = {𝑧[𝑦 / 𝑥]𝑧𝑥}
3 sbcel2gv 3820 . . . . . . . 8 (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧𝑥𝑧𝑦))
43eqabcdv 2862 . . . . . . 7 (𝑦 ∈ V → {𝑧[𝑦 / 𝑥]𝑧𝑥} = 𝑦)
52, 4eqtrid 2776 . . . . . 6 (𝑦 ∈ V → 𝑦 / 𝑥𝑥 = 𝑦)
65elv 3452 . . . . 5 𝑦 / 𝑥𝑥 = 𝑦
76csbeq2i 3870 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑦𝑦
8 csbcow 3877 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑥𝑥
9 df-csb 3863 . . . 4 𝐴 / 𝑦𝑦 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
107, 8, 93eqtr3i 2760 . . 3 𝐴 / 𝑥𝑥 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
11 sbcel2gv 3820 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧𝑦𝑧𝐴))
1211eqabcdv 2862 . . 3 (𝐴 ∈ V → {𝑧[𝐴 / 𝑦]𝑧𝑦} = 𝐴)
1310, 12eqtrid 2776 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
141, 13syl 17 1 (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3447  [wsbc 3753  csb 3862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-sbc 3754  df-csb 3863
This theorem is referenced by:  csbvargi  4398  sbccsb2  4400  2nreu  4407  csbfv  6908  ixpsnval  8873  csbwrdg  14509  swrdspsleq  14630  prmgaplem7  17028  telgsums  19923  ixpsnbasval  21115  scmatscm  22400  pm2mpf1lem  22681  pm2mpcoe1  22687  idpm2idmp  22688  pm2mpmhmlem2  22706  monmat2matmon  22711  pm2mp  22712  fvmptnn04if  22736  chfacfscmulfsupp  22746  cayhamlem4  22775  divcncf  25348  opsbc2ie  32405  esum2dlem  34082  relowlpssretop  37352  rdgeqoa  37358  renegclALT  38956  cdlemk40  40911  tfsconcatfv  43330  iscard4  43522  minregex  43523  cotrclrcl  43731  frege124d  43750  frege70  43922  frege72  43924  frege77  43929  frege91  43943  frege92  43944  frege116  43968  frege118  43970  frege120  43972  rusbcALT  44428  onfrALTlem5  44532  onfrALTlem4  44533  onfrALTlem5VD  44874  iccelpart  47434  ply1mulgsumlem4  48378
  Copyright terms: Public domain W3C validator