MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbvarg Structured version   Visualization version   GIF version

Theorem csbvarg 4362
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbvarg (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)

Proof of Theorem csbvarg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3440 . 2 (𝐴𝑉𝐴 ∈ V)
2 df-csb 3829 . . . . . . 7 𝑦 / 𝑥𝑥 = {𝑧[𝑦 / 𝑥]𝑧𝑥}
3 sbcel2gv 3784 . . . . . . . 8 (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧𝑥𝑧𝑦))
43abbi1dv 2877 . . . . . . 7 (𝑦 ∈ V → {𝑧[𝑦 / 𝑥]𝑧𝑥} = 𝑦)
52, 4eqtrid 2790 . . . . . 6 (𝑦 ∈ V → 𝑦 / 𝑥𝑥 = 𝑦)
65elv 3428 . . . . 5 𝑦 / 𝑥𝑥 = 𝑦
76csbeq2i 3836 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑦𝑦
8 csbcow 3843 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑥𝑥
9 df-csb 3829 . . . 4 𝐴 / 𝑦𝑦 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
107, 8, 93eqtr3i 2774 . . 3 𝐴 / 𝑥𝑥 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
11 sbcel2gv 3784 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧𝑦𝑧𝐴))
1211abbi1dv 2877 . . 3 (𝐴 ∈ V → {𝑧[𝐴 / 𝑦]𝑧𝑦} = 𝐴)
1310, 12eqtrid 2790 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
141, 13syl 17 1 (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {cab 2715  Vcvv 3422  [wsbc 3711  csb 3828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-sbc 3712  df-csb 3829
This theorem is referenced by:  csbvargi  4363  sbccsb2  4365  2nreu  4372  csbfv  6801  ixpsnval  8646  csbwrdg  14175  swrdspsleq  14306  prmgaplem7  16686  telgsums  19509  ixpsnbasval  20393  scmatscm  21570  pm2mpf1lem  21851  pm2mpcoe1  21857  idpm2idmp  21858  pm2mpmhmlem2  21876  monmat2matmon  21881  pm2mp  21882  fvmptnn04if  21906  chfacfscmulfsupp  21916  cayhamlem4  21945  divcncf  24516  opsbc2ie  30725  esum2dlem  31960  relowlpssretop  35462  rdgeqoa  35468  renegclALT  36904  cdlemk40  38858  iscard4  41038  cotrclrcl  41239  frege124d  41258  frege70  41430  frege72  41432  frege77  41437  frege91  41451  frege92  41452  frege116  41476  frege118  41478  frege120  41480  rusbcALT  41946  onfrALTlem5  42051  onfrALTlem4  42052  onfrALTlem5VD  42394  iccelpart  44773  ply1mulgsumlem4  45618
  Copyright terms: Public domain W3C validator