MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbvarg Structured version   Visualization version   GIF version

Theorem csbvarg 4371
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbvarg (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)

Proof of Theorem csbvarg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3449 . 2 (𝐴𝑉𝐴 ∈ V)
2 df-csb 3838 . . . . . . 7 𝑦 / 𝑥𝑥 = {𝑧[𝑦 / 𝑥]𝑧𝑥}
3 sbcel2gv 3793 . . . . . . . 8 (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧𝑥𝑧𝑦))
43abbi1dv 2880 . . . . . . 7 (𝑦 ∈ V → {𝑧[𝑦 / 𝑥]𝑧𝑥} = 𝑦)
52, 4eqtrid 2792 . . . . . 6 (𝑦 ∈ V → 𝑦 / 𝑥𝑥 = 𝑦)
65elv 3437 . . . . 5 𝑦 / 𝑥𝑥 = 𝑦
76csbeq2i 3845 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑦𝑦
8 csbcow 3852 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑥𝑥
9 df-csb 3838 . . . 4 𝐴 / 𝑦𝑦 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
107, 8, 93eqtr3i 2776 . . 3 𝐴 / 𝑥𝑥 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
11 sbcel2gv 3793 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧𝑦𝑧𝐴))
1211abbi1dv 2880 . . 3 (𝐴 ∈ V → {𝑧[𝐴 / 𝑦]𝑧𝑦} = 𝐴)
1310, 12eqtrid 2792 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
141, 13syl 17 1 (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  {cab 2717  Vcvv 3431  [wsbc 3720  csb 3837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-sbc 3721  df-csb 3838
This theorem is referenced by:  csbvargi  4372  sbccsb2  4374  2nreu  4381  csbfv  6816  ixpsnval  8671  csbwrdg  14245  swrdspsleq  14376  prmgaplem7  16756  telgsums  19592  ixpsnbasval  20478  scmatscm  21660  pm2mpf1lem  21941  pm2mpcoe1  21947  idpm2idmp  21948  pm2mpmhmlem2  21966  monmat2matmon  21971  pm2mp  21972  fvmptnn04if  21996  chfacfscmulfsupp  22006  cayhamlem4  22035  divcncf  24609  opsbc2ie  30820  esum2dlem  32056  relowlpssretop  35531  rdgeqoa  35537  renegclALT  36973  cdlemk40  38927  iscard4  41119  cotrclrcl  41320  frege124d  41339  frege70  41511  frege72  41513  frege77  41518  frege91  41532  frege92  41533  frege116  41557  frege118  41559  frege120  41561  rusbcALT  42027  onfrALTlem5  42132  onfrALTlem4  42133  onfrALTlem5VD  42475  iccelpart  44854  ply1mulgsumlem4  45699
  Copyright terms: Public domain W3C validator