| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbvarg | Structured version Visualization version GIF version | ||
| Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbvarg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3455 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | df-csb 3849 | . . . . . . 7 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝑥} | |
| 3 | sbcel2gv 3806 | . . . . . . . 8 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
| 4 | 3 | eqabcdv 2863 | . . . . . . 7 ⊢ (𝑦 ∈ V → {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝑥} = 𝑦) |
| 5 | 2, 4 | eqtrid 2777 | . . . . . 6 ⊢ (𝑦 ∈ V → ⦋𝑦 / 𝑥⦌𝑥 = 𝑦) |
| 6 | 5 | elv 3439 | . . . . 5 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = 𝑦 |
| 7 | 6 | csbeq2i 3856 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝑥 = ⦋𝐴 / 𝑦⦌𝑦 |
| 8 | csbcow 3863 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝑥 = ⦋𝐴 / 𝑥⦌𝑥 | |
| 9 | df-csb 3849 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌𝑦 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} | |
| 10 | 7, 8, 9 | 3eqtr3i 2761 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝑥 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} |
| 11 | sbcel2gv 3806 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴)) | |
| 12 | 11 | eqabcdv 2863 | . . 3 ⊢ (𝐴 ∈ V → {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} = 𝐴) |
| 13 | 10, 12 | eqtrid 2777 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
| 14 | 1, 13 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 {cab 2708 Vcvv 3434 [wsbc 3739 ⦋csb 3848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-12 2179 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3436 df-sbc 3740 df-csb 3849 |
| This theorem is referenced by: csbvargi 4383 sbccsb2 4385 2nreu 4392 csbfv 6864 ixpsnval 8819 csbwrdg 14443 swrdspsleq 14565 prmgaplem7 16961 telgsums 19898 ixpsnbasval 21135 scmatscm 22421 pm2mpf1lem 22702 pm2mpcoe1 22708 idpm2idmp 22709 pm2mpmhmlem2 22727 monmat2matmon 22732 pm2mp 22733 fvmptnn04if 22757 chfacfscmulfsupp 22767 cayhamlem4 22796 divcncf 25368 opsbc2ie 32445 esum2dlem 34095 relowlpssretop 37377 rdgeqoa 37383 renegclALT 38981 cdlemk40 40935 tfsconcatfv 43353 iscard4 43545 minregex 43546 cotrclrcl 43754 frege124d 43773 frege70 43945 frege72 43947 frege77 43952 frege91 43966 frege92 43967 frege116 43991 frege118 43993 frege120 43995 rusbcALT 44450 onfrALTlem5 44554 onfrALTlem4 44555 onfrALTlem5VD 44896 iccelpart 47443 ply1mulgsumlem4 48400 |
| Copyright terms: Public domain | W3C validator |