MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbvarg Structured version   Visualization version   GIF version

Theorem csbvarg 4430
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbvarg (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)

Proof of Theorem csbvarg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3491 . 2 (𝐴𝑉𝐴 ∈ V)
2 df-csb 3893 . . . . . . 7 𝑦 / 𝑥𝑥 = {𝑧[𝑦 / 𝑥]𝑧𝑥}
3 sbcel2gv 3848 . . . . . . . 8 (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧𝑥𝑧𝑦))
43eqabcdv 2866 . . . . . . 7 (𝑦 ∈ V → {𝑧[𝑦 / 𝑥]𝑧𝑥} = 𝑦)
52, 4eqtrid 2782 . . . . . 6 (𝑦 ∈ V → 𝑦 / 𝑥𝑥 = 𝑦)
65elv 3478 . . . . 5 𝑦 / 𝑥𝑥 = 𝑦
76csbeq2i 3900 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑦𝑦
8 csbcow 3907 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑥𝑥
9 df-csb 3893 . . . 4 𝐴 / 𝑦𝑦 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
107, 8, 93eqtr3i 2766 . . 3 𝐴 / 𝑥𝑥 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
11 sbcel2gv 3848 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧𝑦𝑧𝐴))
1211eqabcdv 2866 . . 3 (𝐴 ∈ V → {𝑧[𝐴 / 𝑦]𝑧𝑦} = 𝐴)
1310, 12eqtrid 2782 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
141, 13syl 17 1 (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  {cab 2707  Vcvv 3472  [wsbc 3776  csb 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-sbc 3777  df-csb 3893
This theorem is referenced by:  csbvargi  4431  sbccsb2  4433  2nreu  4440  csbfv  6940  ixpsnval  8896  csbwrdg  14498  swrdspsleq  14619  prmgaplem7  16994  telgsums  19902  ixpsnbasval  20977  scmatscm  22235  pm2mpf1lem  22516  pm2mpcoe1  22522  idpm2idmp  22523  pm2mpmhmlem2  22541  monmat2matmon  22546  pm2mp  22547  fvmptnn04if  22571  chfacfscmulfsupp  22581  cayhamlem4  22610  divcncf  25196  opsbc2ie  31983  esum2dlem  33388  relowlpssretop  36548  rdgeqoa  36554  renegclALT  38136  cdlemk40  40091  tfsconcatfv  42393  iscard4  42586  minregex  42587  cotrclrcl  42795  frege124d  42814  frege70  42986  frege72  42988  frege77  42993  frege91  43007  frege92  43008  frege116  43032  frege118  43034  frege120  43036  rusbcALT  43500  onfrALTlem5  43605  onfrALTlem4  43606  onfrALTlem5VD  43948  iccelpart  46399  ply1mulgsumlem4  47157
  Copyright terms: Public domain W3C validator