Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbvarg | Structured version Visualization version GIF version |
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbvarg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3450 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | df-csb 3833 | . . . . . . 7 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝑥} | |
3 | sbcel2gv 3788 | . . . . . . . 8 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
4 | 3 | abbi1dv 2878 | . . . . . . 7 ⊢ (𝑦 ∈ V → {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝑥} = 𝑦) |
5 | 2, 4 | eqtrid 2790 | . . . . . 6 ⊢ (𝑦 ∈ V → ⦋𝑦 / 𝑥⦌𝑥 = 𝑦) |
6 | 5 | elv 3438 | . . . . 5 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = 𝑦 |
7 | 6 | csbeq2i 3840 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝑥 = ⦋𝐴 / 𝑦⦌𝑦 |
8 | csbcow 3847 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝑥 = ⦋𝐴 / 𝑥⦌𝑥 | |
9 | df-csb 3833 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌𝑦 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} | |
10 | 7, 8, 9 | 3eqtr3i 2774 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝑥 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} |
11 | sbcel2gv 3788 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴)) | |
12 | 11 | abbi1dv 2878 | . . 3 ⊢ (𝐴 ∈ V → {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} = 𝐴) |
13 | 10, 12 | eqtrid 2790 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
14 | 1, 13 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {cab 2715 Vcvv 3432 [wsbc 3716 ⦋csb 3832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-sbc 3717 df-csb 3833 |
This theorem is referenced by: csbvargi 4366 sbccsb2 4368 2nreu 4375 csbfv 6819 ixpsnval 8688 csbwrdg 14247 swrdspsleq 14378 prmgaplem7 16758 telgsums 19594 ixpsnbasval 20480 scmatscm 21662 pm2mpf1lem 21943 pm2mpcoe1 21949 idpm2idmp 21950 pm2mpmhmlem2 21968 monmat2matmon 21973 pm2mp 21974 fvmptnn04if 21998 chfacfscmulfsupp 22008 cayhamlem4 22037 divcncf 24611 opsbc2ie 30824 esum2dlem 32060 relowlpssretop 35535 rdgeqoa 35541 renegclALT 36977 cdlemk40 38931 iscard4 41140 minregex 41141 cotrclrcl 41350 frege124d 41369 frege70 41541 frege72 41543 frege77 41548 frege91 41562 frege92 41563 frege116 41587 frege118 41589 frege120 41591 rusbcALT 42057 onfrALTlem5 42162 onfrALTlem4 42163 onfrALTlem5VD 42505 iccelpart 44885 ply1mulgsumlem4 45730 |
Copyright terms: Public domain | W3C validator |