MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbvarg Structured version   Visualization version   GIF version

Theorem csbvarg 4385
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbvarg (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)

Proof of Theorem csbvarg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐴𝑉𝐴 ∈ V)
2 df-csb 3848 . . . . . . 7 𝑦 / 𝑥𝑥 = {𝑧[𝑦 / 𝑥]𝑧𝑥}
3 sbcel2gv 3805 . . . . . . . 8 (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧𝑥𝑧𝑦))
43eqabcdv 2867 . . . . . . 7 (𝑦 ∈ V → {𝑧[𝑦 / 𝑥]𝑧𝑥} = 𝑦)
52, 4eqtrid 2780 . . . . . 6 (𝑦 ∈ V → 𝑦 / 𝑥𝑥 = 𝑦)
65elv 3443 . . . . 5 𝑦 / 𝑥𝑥 = 𝑦
76csbeq2i 3855 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑦𝑦
8 csbcow 3862 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑥𝑥
9 df-csb 3848 . . . 4 𝐴 / 𝑦𝑦 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
107, 8, 93eqtr3i 2764 . . 3 𝐴 / 𝑥𝑥 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
11 sbcel2gv 3805 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧𝑦𝑧𝐴))
1211eqabcdv 2867 . . 3 (𝐴 ∈ V → {𝑧[𝐴 / 𝑦]𝑧𝑦} = 𝐴)
1310, 12eqtrid 2780 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
141, 13syl 17 1 (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {cab 2711  Vcvv 3438  [wsbc 3738  csb 3847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3440  df-sbc 3739  df-csb 3848
This theorem is referenced by:  csbvargi  4386  sbccsb2  4388  2nreu  4395  csbfv  6878  ixpsnval  8833  csbwrdg  14461  swrdspsleq  14583  prmgaplem7  16979  telgsums  19915  ixpsnbasval  21152  scmatscm  22438  pm2mpf1lem  22719  pm2mpcoe1  22725  idpm2idmp  22726  pm2mpmhmlem2  22744  monmat2matmon  22749  pm2mp  22750  fvmptnn04if  22774  chfacfscmulfsupp  22784  cayhamlem4  22813  divcncf  25385  opsbc2ie  32466  esum2dlem  34116  relowlpssretop  37419  rdgeqoa  37425  renegclALT  39072  cdlemk40  41026  tfsconcatfv  43448  iscard4  43640  minregex  43641  cotrclrcl  43849  frege124d  43868  frege70  44040  frege72  44042  frege77  44047  frege91  44061  frege92  44062  frege116  44086  frege118  44088  frege120  44090  rusbcALT  44545  onfrALTlem5  44649  onfrALTlem4  44650  onfrALTlem5VD  44991  iccelpart  47547  ply1mulgsumlem4  48504
  Copyright terms: Public domain W3C validator