MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbvarg Structured version   Visualization version   GIF version

Theorem csbvarg 4400
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbvarg (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)

Proof of Theorem csbvarg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3471 . 2 (𝐴𝑉𝐴 ∈ V)
2 df-csb 3866 . . . . . . 7 𝑦 / 𝑥𝑥 = {𝑧[𝑦 / 𝑥]𝑧𝑥}
3 sbcel2gv 3823 . . . . . . . 8 (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧𝑥𝑧𝑦))
43eqabcdv 2863 . . . . . . 7 (𝑦 ∈ V → {𝑧[𝑦 / 𝑥]𝑧𝑥} = 𝑦)
52, 4eqtrid 2777 . . . . . 6 (𝑦 ∈ V → 𝑦 / 𝑥𝑥 = 𝑦)
65elv 3455 . . . . 5 𝑦 / 𝑥𝑥 = 𝑦
76csbeq2i 3873 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑦𝑦
8 csbcow 3880 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑥𝑥
9 df-csb 3866 . . . 4 𝐴 / 𝑦𝑦 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
107, 8, 93eqtr3i 2761 . . 3 𝐴 / 𝑥𝑥 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
11 sbcel2gv 3823 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧𝑦𝑧𝐴))
1211eqabcdv 2863 . . 3 (𝐴 ∈ V → {𝑧[𝐴 / 𝑦]𝑧𝑦} = 𝐴)
1310, 12eqtrid 2777 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
141, 13syl 17 1 (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2708  Vcvv 3450  [wsbc 3756  csb 3865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-sbc 3757  df-csb 3866
This theorem is referenced by:  csbvargi  4401  sbccsb2  4403  2nreu  4410  csbfv  6911  ixpsnval  8876  csbwrdg  14516  swrdspsleq  14637  prmgaplem7  17035  telgsums  19930  ixpsnbasval  21122  scmatscm  22407  pm2mpf1lem  22688  pm2mpcoe1  22694  idpm2idmp  22695  pm2mpmhmlem2  22713  monmat2matmon  22718  pm2mp  22719  fvmptnn04if  22743  chfacfscmulfsupp  22753  cayhamlem4  22782  divcncf  25355  opsbc2ie  32412  esum2dlem  34089  relowlpssretop  37359  rdgeqoa  37365  renegclALT  38963  cdlemk40  40918  tfsconcatfv  43337  iscard4  43529  minregex  43530  cotrclrcl  43738  frege124d  43757  frege70  43929  frege72  43931  frege77  43936  frege91  43950  frege92  43951  frege116  43975  frege118  43977  frege120  43979  rusbcALT  44435  onfrALTlem5  44539  onfrALTlem4  44540  onfrALTlem5VD  44881  iccelpart  47438  ply1mulgsumlem4  48382
  Copyright terms: Public domain W3C validator