| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbvarg | Structured version Visualization version GIF version | ||
| Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbvarg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | df-csb 3866 | . . . . . . 7 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝑥} | |
| 3 | sbcel2gv 3823 | . . . . . . . 8 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
| 4 | 3 | eqabcdv 2863 | . . . . . . 7 ⊢ (𝑦 ∈ V → {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝑥} = 𝑦) |
| 5 | 2, 4 | eqtrid 2777 | . . . . . 6 ⊢ (𝑦 ∈ V → ⦋𝑦 / 𝑥⦌𝑥 = 𝑦) |
| 6 | 5 | elv 3455 | . . . . 5 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = 𝑦 |
| 7 | 6 | csbeq2i 3873 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝑥 = ⦋𝐴 / 𝑦⦌𝑦 |
| 8 | csbcow 3880 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝑥 = ⦋𝐴 / 𝑥⦌𝑥 | |
| 9 | df-csb 3866 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌𝑦 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} | |
| 10 | 7, 8, 9 | 3eqtr3i 2761 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝑥 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} |
| 11 | sbcel2gv 3823 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴)) | |
| 12 | 11 | eqabcdv 2863 | . . 3 ⊢ (𝐴 ∈ V → {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} = 𝐴) |
| 13 | 10, 12 | eqtrid 2777 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
| 14 | 1, 13 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2708 Vcvv 3450 [wsbc 3756 ⦋csb 3865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-sbc 3757 df-csb 3866 |
| This theorem is referenced by: csbvargi 4401 sbccsb2 4403 2nreu 4410 csbfv 6911 ixpsnval 8876 csbwrdg 14516 swrdspsleq 14637 prmgaplem7 17035 telgsums 19930 ixpsnbasval 21122 scmatscm 22407 pm2mpf1lem 22688 pm2mpcoe1 22694 idpm2idmp 22695 pm2mpmhmlem2 22713 monmat2matmon 22718 pm2mp 22719 fvmptnn04if 22743 chfacfscmulfsupp 22753 cayhamlem4 22782 divcncf 25355 opsbc2ie 32412 esum2dlem 34089 relowlpssretop 37359 rdgeqoa 37365 renegclALT 38963 cdlemk40 40918 tfsconcatfv 43337 iscard4 43529 minregex 43530 cotrclrcl 43738 frege124d 43757 frege70 43929 frege72 43931 frege77 43936 frege91 43950 frege92 43951 frege116 43975 frege118 43977 frege120 43979 rusbcALT 44435 onfrALTlem5 44539 onfrALTlem4 44540 onfrALTlem5VD 44881 iccelpart 47438 ply1mulgsumlem4 48382 |
| Copyright terms: Public domain | W3C validator |