Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefrs29bpre0 Structured version   Visualization version   GIF version

Theorem cdlemefrs29bpre0 40515
Description: TODO fix comment. (Contributed by NM, 29-Mar-2013.)
Hypotheses
Ref Expression
cdlemefrs27.b 𝐵 = (Base‘𝐾)
cdlemefrs27.l = (le‘𝐾)
cdlemefrs27.j = (join‘𝐾)
cdlemefrs27.m = (meet‘𝐾)
cdlemefrs27.a 𝐴 = (Atoms‘𝐾)
cdlemefrs27.h 𝐻 = (LHyp‘𝐾)
cdlemefrs27.eq (𝑠 = 𝑅 → (𝜑𝜓))
cdlemefrs27.nb ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑁𝐵)
Assertion
Ref Expression
cdlemefrs29bpre0 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ 𝑧 = 𝑅 / 𝑠𝑁))
Distinct variable groups:   𝑧,𝑠   𝐴,𝑠   𝐻,𝑠   ,𝑠   𝐾,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑊,𝑠   𝜓,𝑠
Allowed substitution hints:   𝜑(𝑧,𝑠)   𝜓(𝑧)   𝐴(𝑧)   𝐵(𝑧,𝑠)   𝑃(𝑧)   𝑄(𝑧)   𝑅(𝑧)   𝐻(𝑧)   (𝑧)   𝐾(𝑧)   (𝑧)   (𝑧,𝑠)   𝑁(𝑧,𝑠)   𝑊(𝑧)

Proof of Theorem cdlemefrs29bpre0
StepHypRef Expression
1 df-ral 3049 . . 3 (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ∀𝑠(𝑠𝐴 → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
2 anass 468 . . . . . . 7 (((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (𝑠𝐴 ∧ ((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅)))
32imbi1i 349 . . . . . 6 ((((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ((𝑠𝐴 ∧ ((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅)) → 𝑧 = (𝑁 (𝑅 𝑊))))
4 impexp 450 . . . . . 6 ((((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊)))))
5 impexp 450 . . . . . 6 (((𝑠𝐴 ∧ ((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅)) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ (𝑠𝐴 → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
63, 4, 53bitr3ri 302 . . . . 5 ((𝑠𝐴 → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) ↔ ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊)))))
7 simpl11 1249 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simpl2r 1228 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
9 cdlemefrs27.l . . . . . . . . . . . . 13 = (le‘𝐾)
10 cdlemefrs27.m . . . . . . . . . . . . 13 = (meet‘𝐾)
11 eqid 2733 . . . . . . . . . . . . 13 (0.‘𝐾) = (0.‘𝐾)
12 cdlemefrs27.a . . . . . . . . . . . . 13 𝐴 = (Atoms‘𝐾)
13 cdlemefrs27.h . . . . . . . . . . . . 13 𝐻 = (LHyp‘𝐾)
149, 10, 11, 12, 13lhpmat 40149 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 𝑊) = (0.‘𝐾))
157, 8, 14syl2anc 584 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑅 𝑊) = (0.‘𝐾))
1615oveq2d 7368 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑠 (𝑅 𝑊)) = (𝑠 (0.‘𝐾)))
17 simp11l 1285 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝐾 ∈ HL)
18 hlol 39480 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ OL)
1917, 18syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝐾 ∈ OL)
2019adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝐾 ∈ OL)
21 simprl 770 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑠𝐴)
22 cdlemefrs27.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐾)
2322, 12atbase 39408 . . . . . . . . . . . 12 (𝑠𝐴𝑠𝐵)
2421, 23syl 17 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑠𝐵)
25 cdlemefrs27.j . . . . . . . . . . . 12 = (join‘𝐾)
2622, 25, 11olj01 39344 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑠𝐵) → (𝑠 (0.‘𝐾)) = 𝑠)
2720, 24, 26syl2anc 584 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑠 (0.‘𝐾)) = 𝑠)
2816, 27eqtrd 2768 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑠 (𝑅 𝑊)) = 𝑠)
2928eqeq1d 2735 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑠 = 𝑅))
3015oveq2d 7368 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑁 (𝑅 𝑊)) = (𝑁 (0.‘𝐾)))
31 simpl1 1192 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
32 simpl2l 1227 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑃𝑄)
33 simprr 772 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (¬ 𝑠 𝑊𝜑))
34 cdlemefrs27.nb . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑁𝐵)
3531, 32, 21, 33, 34syl112anc 1376 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑁𝐵)
3622, 25, 11olj01 39344 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑁𝐵) → (𝑁 (0.‘𝐾)) = 𝑁)
3720, 35, 36syl2anc 584 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑁 (0.‘𝐾)) = 𝑁)
3830, 37eqtrd 2768 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑁 (𝑅 𝑊)) = 𝑁)
3938eqeq2d 2744 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑧 = (𝑁 (𝑅 𝑊)) ↔ 𝑧 = 𝑁))
4029, 39imbi12d 344 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊))) ↔ (𝑠 = 𝑅𝑧 = 𝑁)))
4140pm5.74da 803 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊)))) ↔ ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → (𝑠 = 𝑅𝑧 = 𝑁))))
42 impexp 450 . . . . . . 7 ((((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ 𝑠 = 𝑅) → 𝑧 = 𝑁) ↔ ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → (𝑠 = 𝑅𝑧 = 𝑁)))
43 simp2rl 1243 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅𝐴)
44 simp2rr 1244 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ¬ 𝑅 𝑊)
45 simp3 1138 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝜓)
46 eleq1 2821 . . . . . . . . . . . . 13 (𝑠 = 𝑅 → (𝑠𝐴𝑅𝐴))
47 breq1 5096 . . . . . . . . . . . . . . 15 (𝑠 = 𝑅 → (𝑠 𝑊𝑅 𝑊))
4847notbid 318 . . . . . . . . . . . . . 14 (𝑠 = 𝑅 → (¬ 𝑠 𝑊 ↔ ¬ 𝑅 𝑊))
49 cdlemefrs27.eq . . . . . . . . . . . . . 14 (𝑠 = 𝑅 → (𝜑𝜓))
5048, 49anbi12d 632 . . . . . . . . . . . . 13 (𝑠 = 𝑅 → ((¬ 𝑠 𝑊𝜑) ↔ (¬ 𝑅 𝑊𝜓)))
5146, 50anbi12d 632 . . . . . . . . . . . 12 (𝑠 = 𝑅 → ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ↔ (𝑅𝐴 ∧ (¬ 𝑅 𝑊𝜓))))
5251biimprcd 250 . . . . . . . . . . 11 ((𝑅𝐴 ∧ (¬ 𝑅 𝑊𝜓)) → (𝑠 = 𝑅 → (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))))
5343, 44, 45, 52syl12anc 836 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (𝑠 = 𝑅 → (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))))
5453pm4.71rd 562 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (𝑠 = 𝑅 ↔ ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ 𝑠 = 𝑅)))
5554imbi1d 341 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ((𝑠 = 𝑅𝑧 = 𝑁) ↔ (((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ 𝑠 = 𝑅) → 𝑧 = 𝑁)))
56 eqcom 2740 . . . . . . . . 9 (𝑧 = 𝑁𝑁 = 𝑧)
5756imbi2i 336 . . . . . . . 8 ((𝑠 = 𝑅𝑧 = 𝑁) ↔ (𝑠 = 𝑅𝑁 = 𝑧))
5855, 57bitr3di 286 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ((((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ 𝑠 = 𝑅) → 𝑧 = 𝑁) ↔ (𝑠 = 𝑅𝑁 = 𝑧)))
5942, 58bitr3id 285 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → (𝑠 = 𝑅𝑧 = 𝑁)) ↔ (𝑠 = 𝑅𝑁 = 𝑧)))
6041, 59bitrd 279 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊)))) ↔ (𝑠 = 𝑅𝑁 = 𝑧)))
616, 60bitrid 283 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ((𝑠𝐴 → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) ↔ (𝑠 = 𝑅𝑁 = 𝑧)))
6261albidv 1921 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠(𝑠𝐴 → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) ↔ ∀𝑠(𝑠 = 𝑅𝑁 = 𝑧)))
631, 62bitrid 283 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ∀𝑠(𝑠 = 𝑅𝑁 = 𝑧)))
64 nfcv 2895 . . . . 5 𝑠𝑧
6564csbiebg 3878 . . . 4 (𝑅𝐴 → (∀𝑠(𝑠 = 𝑅𝑁 = 𝑧) ↔ 𝑅 / 𝑠𝑁 = 𝑧))
6643, 65syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠(𝑠 = 𝑅𝑁 = 𝑧) ↔ 𝑅 / 𝑠𝑁 = 𝑧))
67 eqcom 2740 . . 3 (𝑅 / 𝑠𝑁 = 𝑧𝑧 = 𝑅 / 𝑠𝑁)
6866, 67bitrdi 287 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠(𝑠 = 𝑅𝑁 = 𝑧) ↔ 𝑧 = 𝑅 / 𝑠𝑁))
6963, 68bitrd 279 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ 𝑧 = 𝑅 / 𝑠𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2113  wne 2929  wral 3048  csb 3846   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  lecple 17170  joincjn 18219  meetcmee 18220  0.cp0 18329  OLcol 39293  Atomscatm 39382  HLchlt 39469  LHypclh 40103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-lat 18340  df-oposet 39295  df-ol 39297  df-oml 39298  df-covers 39385  df-ats 39386  df-atl 39417  df-cvlat 39441  df-hlat 39470  df-lhyp 40107
This theorem is referenced by:  cdlemefrs29bpre1  40516  cdlemefrs32fva  40519  cdlemefr29bpre0N  40525  cdlemefs29bpre0N  40535
  Copyright terms: Public domain W3C validator