Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefrs29bpre0 Structured version   Visualization version   GIF version

Theorem cdlemefrs29bpre0 39255
Description: TODO fix comment. (Contributed by NM, 29-Mar-2013.)
Hypotheses
Ref Expression
cdlemefrs27.b 𝐡 = (Baseβ€˜πΎ)
cdlemefrs27.l ≀ = (leβ€˜πΎ)
cdlemefrs27.j ∨ = (joinβ€˜πΎ)
cdlemefrs27.m ∧ = (meetβ€˜πΎ)
cdlemefrs27.a 𝐴 = (Atomsβ€˜πΎ)
cdlemefrs27.h 𝐻 = (LHypβ€˜πΎ)
cdlemefrs27.eq (𝑠 = 𝑅 β†’ (πœ‘ ↔ πœ“))
cdlemefrs27.nb ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ 𝑁 ∈ 𝐡)
Assertion
Ref Expression
cdlemefrs29bpre0 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ (βˆ€π‘  ∈ 𝐴 (((Β¬ 𝑠 ≀ π‘Š ∧ πœ‘) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š))) ↔ 𝑧 = ⦋𝑅 / π‘ β¦Œπ‘))
Distinct variable groups:   𝑧,𝑠   𝐴,𝑠   𝐻,𝑠   ∨ ,𝑠   𝐾,𝑠   ≀ ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   π‘Š,𝑠   πœ“,𝑠
Allowed substitution hints:   πœ‘(𝑧,𝑠)   πœ“(𝑧)   𝐴(𝑧)   𝐡(𝑧,𝑠)   𝑃(𝑧)   𝑄(𝑧)   𝑅(𝑧)   𝐻(𝑧)   ∨ (𝑧)   𝐾(𝑧)   ≀ (𝑧)   ∧ (𝑧,𝑠)   𝑁(𝑧,𝑠)   π‘Š(𝑧)

Proof of Theorem cdlemefrs29bpre0
StepHypRef Expression
1 df-ral 3062 . . 3 (βˆ€π‘  ∈ 𝐴 (((Β¬ 𝑠 ≀ π‘Š ∧ πœ‘) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š))) ↔ βˆ€π‘ (𝑠 ∈ 𝐴 β†’ (((Β¬ 𝑠 ≀ π‘Š ∧ πœ‘) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š)))))
2 anass 469 . . . . . . 7 (((𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘)) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) ↔ (𝑠 ∈ 𝐴 ∧ ((Β¬ 𝑠 ≀ π‘Š ∧ πœ‘) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅)))
32imbi1i 349 . . . . . 6 ((((𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘)) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š))) ↔ ((𝑠 ∈ 𝐴 ∧ ((Β¬ 𝑠 ≀ π‘Š ∧ πœ‘) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅)) β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š))))
4 impexp 451 . . . . . 6 ((((𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘)) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š))) ↔ ((𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘)) β†’ ((𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅 β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š)))))
5 impexp 451 . . . . . 6 (((𝑠 ∈ 𝐴 ∧ ((Β¬ 𝑠 ≀ π‘Š ∧ πœ‘) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅)) β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š))) ↔ (𝑠 ∈ 𝐴 β†’ (((Β¬ 𝑠 ≀ π‘Š ∧ πœ‘) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š)))))
63, 4, 53bitr3ri 301 . . . . 5 ((𝑠 ∈ 𝐴 β†’ (((Β¬ 𝑠 ≀ π‘Š ∧ πœ‘) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š)))) ↔ ((𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘)) β†’ ((𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅 β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š)))))
7 simpl11 1248 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
8 simpl2r 1227 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))
9 cdlemefrs27.l . . . . . . . . . . . . 13 ≀ = (leβ€˜πΎ)
10 cdlemefrs27.m . . . . . . . . . . . . 13 ∧ = (meetβ€˜πΎ)
11 eqid 2732 . . . . . . . . . . . . 13 (0.β€˜πΎ) = (0.β€˜πΎ)
12 cdlemefrs27.a . . . . . . . . . . . . 13 𝐴 = (Atomsβ€˜πΎ)
13 cdlemefrs27.h . . . . . . . . . . . . 13 𝐻 = (LHypβ€˜πΎ)
149, 10, 11, 12, 13lhpmat 38889 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝑅 ∧ π‘Š) = (0.β€˜πΎ))
157, 8, 14syl2anc 584 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ (𝑅 ∧ π‘Š) = (0.β€˜πΎ))
1615oveq2d 7421 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ (𝑠 ∨ (𝑅 ∧ π‘Š)) = (𝑠 ∨ (0.β€˜πΎ)))
17 simp11l 1284 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ 𝐾 ∈ HL)
18 hlol 38219 . . . . . . . . . . . . 13 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
1917, 18syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ 𝐾 ∈ OL)
2019adantr 481 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ 𝐾 ∈ OL)
21 simprl 769 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ 𝑠 ∈ 𝐴)
22 cdlemefrs27.b . . . . . . . . . . . . 13 𝐡 = (Baseβ€˜πΎ)
2322, 12atbase 38147 . . . . . . . . . . . 12 (𝑠 ∈ 𝐴 β†’ 𝑠 ∈ 𝐡)
2421, 23syl 17 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ 𝑠 ∈ 𝐡)
25 cdlemefrs27.j . . . . . . . . . . . 12 ∨ = (joinβ€˜πΎ)
2622, 25, 11olj01 38083 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑠 ∈ 𝐡) β†’ (𝑠 ∨ (0.β€˜πΎ)) = 𝑠)
2720, 24, 26syl2anc 584 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ (𝑠 ∨ (0.β€˜πΎ)) = 𝑠)
2816, 27eqtrd 2772 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑠)
2928eqeq1d 2734 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ ((𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅 ↔ 𝑠 = 𝑅))
3015oveq2d 7421 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ (𝑁 ∨ (𝑅 ∧ π‘Š)) = (𝑁 ∨ (0.β€˜πΎ)))
31 simpl1 1191 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
32 simpl2l 1226 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ 𝑃 β‰  𝑄)
33 simprr 771 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))
34 cdlemefrs27.nb . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ 𝑁 ∈ 𝐡)
3531, 32, 21, 33, 34syl112anc 1374 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ 𝑁 ∈ 𝐡)
3622, 25, 11olj01 38083 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑁 ∈ 𝐡) β†’ (𝑁 ∨ (0.β€˜πΎ)) = 𝑁)
3720, 35, 36syl2anc 584 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ (𝑁 ∨ (0.β€˜πΎ)) = 𝑁)
3830, 37eqtrd 2772 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ (𝑁 ∨ (𝑅 ∧ π‘Š)) = 𝑁)
3938eqeq2d 2743 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ (𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š)) ↔ 𝑧 = 𝑁))
4029, 39imbi12d 344 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))) β†’ (((𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅 β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š))) ↔ (𝑠 = 𝑅 β†’ 𝑧 = 𝑁)))
4140pm5.74da 802 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ (((𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘)) β†’ ((𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅 β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š)))) ↔ ((𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘)) β†’ (𝑠 = 𝑅 β†’ 𝑧 = 𝑁))))
42 impexp 451 . . . . . . 7 ((((𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘)) ∧ 𝑠 = 𝑅) β†’ 𝑧 = 𝑁) ↔ ((𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘)) β†’ (𝑠 = 𝑅 β†’ 𝑧 = 𝑁)))
43 simp2rl 1242 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ 𝑅 ∈ 𝐴)
44 simp2rr 1243 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ Β¬ 𝑅 ≀ π‘Š)
45 simp3 1138 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ πœ“)
46 eleq1 2821 . . . . . . . . . . . . 13 (𝑠 = 𝑅 β†’ (𝑠 ∈ 𝐴 ↔ 𝑅 ∈ 𝐴))
47 breq1 5150 . . . . . . . . . . . . . . 15 (𝑠 = 𝑅 β†’ (𝑠 ≀ π‘Š ↔ 𝑅 ≀ π‘Š))
4847notbid 317 . . . . . . . . . . . . . 14 (𝑠 = 𝑅 β†’ (Β¬ 𝑠 ≀ π‘Š ↔ Β¬ 𝑅 ≀ π‘Š))
49 cdlemefrs27.eq . . . . . . . . . . . . . 14 (𝑠 = 𝑅 β†’ (πœ‘ ↔ πœ“))
5048, 49anbi12d 631 . . . . . . . . . . . . 13 (𝑠 = 𝑅 β†’ ((Β¬ 𝑠 ≀ π‘Š ∧ πœ‘) ↔ (Β¬ 𝑅 ≀ π‘Š ∧ πœ“)))
5146, 50anbi12d 631 . . . . . . . . . . . 12 (𝑠 = 𝑅 β†’ ((𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘)) ↔ (𝑅 ∈ 𝐴 ∧ (Β¬ 𝑅 ≀ π‘Š ∧ πœ“))))
5251biimprcd 249 . . . . . . . . . . 11 ((𝑅 ∈ 𝐴 ∧ (Β¬ 𝑅 ≀ π‘Š ∧ πœ“)) β†’ (𝑠 = 𝑅 β†’ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))))
5343, 44, 45, 52syl12anc 835 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ (𝑠 = 𝑅 β†’ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘))))
5453pm4.71rd 563 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ (𝑠 = 𝑅 ↔ ((𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘)) ∧ 𝑠 = 𝑅)))
5554imbi1d 341 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ ((𝑠 = 𝑅 β†’ 𝑧 = 𝑁) ↔ (((𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘)) ∧ 𝑠 = 𝑅) β†’ 𝑧 = 𝑁)))
56 eqcom 2739 . . . . . . . . 9 (𝑧 = 𝑁 ↔ 𝑁 = 𝑧)
5756imbi2i 335 . . . . . . . 8 ((𝑠 = 𝑅 β†’ 𝑧 = 𝑁) ↔ (𝑠 = 𝑅 β†’ 𝑁 = 𝑧))
5855, 57bitr3di 285 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ ((((𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘)) ∧ 𝑠 = 𝑅) β†’ 𝑧 = 𝑁) ↔ (𝑠 = 𝑅 β†’ 𝑁 = 𝑧)))
5942, 58bitr3id 284 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ (((𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘)) β†’ (𝑠 = 𝑅 β†’ 𝑧 = 𝑁)) ↔ (𝑠 = 𝑅 β†’ 𝑁 = 𝑧)))
6041, 59bitrd 278 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ (((𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ πœ‘)) β†’ ((𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅 β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š)))) ↔ (𝑠 = 𝑅 β†’ 𝑁 = 𝑧)))
616, 60bitrid 282 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ ((𝑠 ∈ 𝐴 β†’ (((Β¬ 𝑠 ≀ π‘Š ∧ πœ‘) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š)))) ↔ (𝑠 = 𝑅 β†’ 𝑁 = 𝑧)))
6261albidv 1923 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ (βˆ€π‘ (𝑠 ∈ 𝐴 β†’ (((Β¬ 𝑠 ≀ π‘Š ∧ πœ‘) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š)))) ↔ βˆ€π‘ (𝑠 = 𝑅 β†’ 𝑁 = 𝑧)))
631, 62bitrid 282 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ (βˆ€π‘  ∈ 𝐴 (((Β¬ 𝑠 ≀ π‘Š ∧ πœ‘) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š))) ↔ βˆ€π‘ (𝑠 = 𝑅 β†’ 𝑁 = 𝑧)))
64 nfcv 2903 . . . . 5 Ⅎ𝑠𝑧
6564csbiebg 3925 . . . 4 (𝑅 ∈ 𝐴 β†’ (βˆ€π‘ (𝑠 = 𝑅 β†’ 𝑁 = 𝑧) ↔ ⦋𝑅 / π‘ β¦Œπ‘ = 𝑧))
6643, 65syl 17 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ (βˆ€π‘ (𝑠 = 𝑅 β†’ 𝑁 = 𝑧) ↔ ⦋𝑅 / π‘ β¦Œπ‘ = 𝑧))
67 eqcom 2739 . . 3 (⦋𝑅 / π‘ β¦Œπ‘ = 𝑧 ↔ 𝑧 = ⦋𝑅 / π‘ β¦Œπ‘)
6866, 67bitrdi 286 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ (βˆ€π‘ (𝑠 = 𝑅 β†’ 𝑁 = 𝑧) ↔ 𝑧 = ⦋𝑅 / π‘ β¦Œπ‘))
6963, 68bitrd 278 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ πœ“) β†’ (βˆ€π‘  ∈ 𝐴 (((Β¬ 𝑠 ≀ π‘Š ∧ πœ‘) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š))) ↔ 𝑧 = ⦋𝑅 / π‘ β¦Œπ‘))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087  βˆ€wal 1539   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  β¦‹csb 3892   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  0.cp0 18372  OLcol 38032  Atomscatm 38121  HLchlt 38208  LHypclh 38843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-lhyp 38847
This theorem is referenced by:  cdlemefrs29bpre1  39256  cdlemefrs32fva  39259  cdlemefr29bpre0N  39265  cdlemefs29bpre0N  39275
  Copyright terms: Public domain W3C validator