Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefrs29bpre0 Structured version   Visualization version   GIF version

Theorem cdlemefrs29bpre0 37524
Description: TODO fix comment. (Contributed by NM, 29-Mar-2013.)
Hypotheses
Ref Expression
cdlemefrs27.b 𝐵 = (Base‘𝐾)
cdlemefrs27.l = (le‘𝐾)
cdlemefrs27.j = (join‘𝐾)
cdlemefrs27.m = (meet‘𝐾)
cdlemefrs27.a 𝐴 = (Atoms‘𝐾)
cdlemefrs27.h 𝐻 = (LHyp‘𝐾)
cdlemefrs27.eq (𝑠 = 𝑅 → (𝜑𝜓))
cdlemefrs27.nb ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑁𝐵)
Assertion
Ref Expression
cdlemefrs29bpre0 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ 𝑧 = 𝑅 / 𝑠𝑁))
Distinct variable groups:   𝑧,𝑠   𝐴,𝑠   𝐻,𝑠   ,𝑠   𝐾,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑊,𝑠   𝜓,𝑠
Allowed substitution hints:   𝜑(𝑧,𝑠)   𝜓(𝑧)   𝐴(𝑧)   𝐵(𝑧,𝑠)   𝑃(𝑧)   𝑄(𝑧)   𝑅(𝑧)   𝐻(𝑧)   (𝑧)   𝐾(𝑧)   (𝑧)   (𝑧,𝑠)   𝑁(𝑧,𝑠)   𝑊(𝑧)

Proof of Theorem cdlemefrs29bpre0
StepHypRef Expression
1 df-ral 3141 . . 3 (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ∀𝑠(𝑠𝐴 → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
2 anass 471 . . . . . . 7 (((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (𝑠𝐴 ∧ ((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅)))
32imbi1i 352 . . . . . 6 ((((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ((𝑠𝐴 ∧ ((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅)) → 𝑧 = (𝑁 (𝑅 𝑊))))
4 impexp 453 . . . . . 6 ((((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊)))))
5 impexp 453 . . . . . 6 (((𝑠𝐴 ∧ ((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅)) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ (𝑠𝐴 → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
63, 4, 53bitr3ri 304 . . . . 5 ((𝑠𝐴 → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) ↔ ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊)))))
7 simpl11 1243 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simpl2r 1222 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
9 cdlemefrs27.l . . . . . . . . . . . . 13 = (le‘𝐾)
10 cdlemefrs27.m . . . . . . . . . . . . 13 = (meet‘𝐾)
11 eqid 2819 . . . . . . . . . . . . 13 (0.‘𝐾) = (0.‘𝐾)
12 cdlemefrs27.a . . . . . . . . . . . . 13 𝐴 = (Atoms‘𝐾)
13 cdlemefrs27.h . . . . . . . . . . . . 13 𝐻 = (LHyp‘𝐾)
149, 10, 11, 12, 13lhpmat 37158 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 𝑊) = (0.‘𝐾))
157, 8, 14syl2anc 586 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑅 𝑊) = (0.‘𝐾))
1615oveq2d 7164 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑠 (𝑅 𝑊)) = (𝑠 (0.‘𝐾)))
17 simp11l 1279 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝐾 ∈ HL)
18 hlol 36489 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ OL)
1917, 18syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝐾 ∈ OL)
2019adantr 483 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝐾 ∈ OL)
21 simprl 769 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑠𝐴)
22 cdlemefrs27.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐾)
2322, 12atbase 36417 . . . . . . . . . . . 12 (𝑠𝐴𝑠𝐵)
2421, 23syl 17 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑠𝐵)
25 cdlemefrs27.j . . . . . . . . . . . 12 = (join‘𝐾)
2622, 25, 11olj01 36353 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑠𝐵) → (𝑠 (0.‘𝐾)) = 𝑠)
2720, 24, 26syl2anc 586 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑠 (0.‘𝐾)) = 𝑠)
2816, 27eqtrd 2854 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑠 (𝑅 𝑊)) = 𝑠)
2928eqeq1d 2821 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑠 = 𝑅))
3015oveq2d 7164 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑁 (𝑅 𝑊)) = (𝑁 (0.‘𝐾)))
31 simpl1 1186 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
32 simpl2l 1221 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑃𝑄)
33 simprr 771 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (¬ 𝑠 𝑊𝜑))
34 cdlemefrs27.nb . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑁𝐵)
3531, 32, 21, 33, 34syl112anc 1369 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑁𝐵)
3622, 25, 11olj01 36353 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑁𝐵) → (𝑁 (0.‘𝐾)) = 𝑁)
3720, 35, 36syl2anc 586 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑁 (0.‘𝐾)) = 𝑁)
3830, 37eqtrd 2854 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑁 (𝑅 𝑊)) = 𝑁)
3938eqeq2d 2830 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑧 = (𝑁 (𝑅 𝑊)) ↔ 𝑧 = 𝑁))
4029, 39imbi12d 347 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊))) ↔ (𝑠 = 𝑅𝑧 = 𝑁)))
4140pm5.74da 802 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊)))) ↔ ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → (𝑠 = 𝑅𝑧 = 𝑁))))
42 impexp 453 . . . . . . 7 ((((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ 𝑠 = 𝑅) → 𝑧 = 𝑁) ↔ ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → (𝑠 = 𝑅𝑧 = 𝑁)))
43 eqcom 2826 . . . . . . . . 9 (𝑧 = 𝑁𝑁 = 𝑧)
4443imbi2i 338 . . . . . . . 8 ((𝑠 = 𝑅𝑧 = 𝑁) ↔ (𝑠 = 𝑅𝑁 = 𝑧))
45 simp2rl 1237 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅𝐴)
46 simp2rr 1238 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ¬ 𝑅 𝑊)
47 simp3 1133 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝜓)
48 eleq1 2898 . . . . . . . . . . . . 13 (𝑠 = 𝑅 → (𝑠𝐴𝑅𝐴))
49 breq1 5060 . . . . . . . . . . . . . . 15 (𝑠 = 𝑅 → (𝑠 𝑊𝑅 𝑊))
5049notbid 320 . . . . . . . . . . . . . 14 (𝑠 = 𝑅 → (¬ 𝑠 𝑊 ↔ ¬ 𝑅 𝑊))
51 cdlemefrs27.eq . . . . . . . . . . . . . 14 (𝑠 = 𝑅 → (𝜑𝜓))
5250, 51anbi12d 632 . . . . . . . . . . . . 13 (𝑠 = 𝑅 → ((¬ 𝑠 𝑊𝜑) ↔ (¬ 𝑅 𝑊𝜓)))
5348, 52anbi12d 632 . . . . . . . . . . . 12 (𝑠 = 𝑅 → ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ↔ (𝑅𝐴 ∧ (¬ 𝑅 𝑊𝜓))))
5453biimprcd 252 . . . . . . . . . . 11 ((𝑅𝐴 ∧ (¬ 𝑅 𝑊𝜓)) → (𝑠 = 𝑅 → (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))))
5545, 46, 47, 54syl12anc 834 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (𝑠 = 𝑅 → (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))))
5655pm4.71rd 565 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (𝑠 = 𝑅 ↔ ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ 𝑠 = 𝑅)))
5756imbi1d 344 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ((𝑠 = 𝑅𝑧 = 𝑁) ↔ (((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ 𝑠 = 𝑅) → 𝑧 = 𝑁)))
5844, 57syl5rbbr 288 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ((((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ 𝑠 = 𝑅) → 𝑧 = 𝑁) ↔ (𝑠 = 𝑅𝑁 = 𝑧)))
5942, 58syl5bbr 287 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → (𝑠 = 𝑅𝑧 = 𝑁)) ↔ (𝑠 = 𝑅𝑁 = 𝑧)))
6041, 59bitrd 281 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊)))) ↔ (𝑠 = 𝑅𝑁 = 𝑧)))
616, 60syl5bb 285 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ((𝑠𝐴 → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) ↔ (𝑠 = 𝑅𝑁 = 𝑧)))
6261albidv 1915 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠(𝑠𝐴 → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) ↔ ∀𝑠(𝑠 = 𝑅𝑁 = 𝑧)))
631, 62syl5bb 285 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ∀𝑠(𝑠 = 𝑅𝑁 = 𝑧)))
64 nfcv 2975 . . . . 5 𝑠𝑧
6564csbiebg 3913 . . . 4 (𝑅𝐴 → (∀𝑠(𝑠 = 𝑅𝑁 = 𝑧) ↔ 𝑅 / 𝑠𝑁 = 𝑧))
6645, 65syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠(𝑠 = 𝑅𝑁 = 𝑧) ↔ 𝑅 / 𝑠𝑁 = 𝑧))
67 eqcom 2826 . . 3 (𝑅 / 𝑠𝑁 = 𝑧𝑧 = 𝑅 / 𝑠𝑁)
6866, 67syl6bb 289 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠(𝑠 = 𝑅𝑁 = 𝑧) ↔ 𝑧 = 𝑅 / 𝑠𝑁))
6963, 68bitrd 281 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ 𝑧 = 𝑅 / 𝑠𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1082  wal 1529   = wceq 1531  wcel 2108  wne 3014  wral 3136  csb 3881   class class class wbr 5057  cfv 6348  (class class class)co 7148  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  0.cp0 17639  OLcol 36302  Atomscatm 36391  HLchlt 36478  LHypclh 37112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-oposet 36304  df-ol 36306  df-oml 36307  df-covers 36394  df-ats 36395  df-atl 36426  df-cvlat 36450  df-hlat 36479  df-lhyp 37116
This theorem is referenced by:  cdlemefrs29bpre1  37525  cdlemefrs32fva  37528  cdlemefr29bpre0N  37534  cdlemefs29bpre0N  37544
  Copyright terms: Public domain W3C validator