Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefrs29bpre0 Structured version   Visualization version   GIF version

Theorem cdlemefrs29bpre0 40398
Description: TODO fix comment. (Contributed by NM, 29-Mar-2013.)
Hypotheses
Ref Expression
cdlemefrs27.b 𝐵 = (Base‘𝐾)
cdlemefrs27.l = (le‘𝐾)
cdlemefrs27.j = (join‘𝐾)
cdlemefrs27.m = (meet‘𝐾)
cdlemefrs27.a 𝐴 = (Atoms‘𝐾)
cdlemefrs27.h 𝐻 = (LHyp‘𝐾)
cdlemefrs27.eq (𝑠 = 𝑅 → (𝜑𝜓))
cdlemefrs27.nb ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑁𝐵)
Assertion
Ref Expression
cdlemefrs29bpre0 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ 𝑧 = 𝑅 / 𝑠𝑁))
Distinct variable groups:   𝑧,𝑠   𝐴,𝑠   𝐻,𝑠   ,𝑠   𝐾,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑊,𝑠   𝜓,𝑠
Allowed substitution hints:   𝜑(𝑧,𝑠)   𝜓(𝑧)   𝐴(𝑧)   𝐵(𝑧,𝑠)   𝑃(𝑧)   𝑄(𝑧)   𝑅(𝑧)   𝐻(𝑧)   (𝑧)   𝐾(𝑧)   (𝑧)   (𝑧,𝑠)   𝑁(𝑧,𝑠)   𝑊(𝑧)

Proof of Theorem cdlemefrs29bpre0
StepHypRef Expression
1 df-ral 3062 . . 3 (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ∀𝑠(𝑠𝐴 → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
2 anass 468 . . . . . . 7 (((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (𝑠𝐴 ∧ ((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅)))
32imbi1i 349 . . . . . 6 ((((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ((𝑠𝐴 ∧ ((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅)) → 𝑧 = (𝑁 (𝑅 𝑊))))
4 impexp 450 . . . . . 6 ((((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊)))))
5 impexp 450 . . . . . 6 (((𝑠𝐴 ∧ ((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅)) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ (𝑠𝐴 → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
63, 4, 53bitr3ri 302 . . . . 5 ((𝑠𝐴 → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) ↔ ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊)))))
7 simpl11 1249 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simpl2r 1228 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
9 cdlemefrs27.l . . . . . . . . . . . . 13 = (le‘𝐾)
10 cdlemefrs27.m . . . . . . . . . . . . 13 = (meet‘𝐾)
11 eqid 2737 . . . . . . . . . . . . 13 (0.‘𝐾) = (0.‘𝐾)
12 cdlemefrs27.a . . . . . . . . . . . . 13 𝐴 = (Atoms‘𝐾)
13 cdlemefrs27.h . . . . . . . . . . . . 13 𝐻 = (LHyp‘𝐾)
149, 10, 11, 12, 13lhpmat 40032 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 𝑊) = (0.‘𝐾))
157, 8, 14syl2anc 584 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑅 𝑊) = (0.‘𝐾))
1615oveq2d 7447 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑠 (𝑅 𝑊)) = (𝑠 (0.‘𝐾)))
17 simp11l 1285 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝐾 ∈ HL)
18 hlol 39362 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ OL)
1917, 18syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝐾 ∈ OL)
2019adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝐾 ∈ OL)
21 simprl 771 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑠𝐴)
22 cdlemefrs27.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐾)
2322, 12atbase 39290 . . . . . . . . . . . 12 (𝑠𝐴𝑠𝐵)
2421, 23syl 17 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑠𝐵)
25 cdlemefrs27.j . . . . . . . . . . . 12 = (join‘𝐾)
2622, 25, 11olj01 39226 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑠𝐵) → (𝑠 (0.‘𝐾)) = 𝑠)
2720, 24, 26syl2anc 584 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑠 (0.‘𝐾)) = 𝑠)
2816, 27eqtrd 2777 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑠 (𝑅 𝑊)) = 𝑠)
2928eqeq1d 2739 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑠 = 𝑅))
3015oveq2d 7447 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑁 (𝑅 𝑊)) = (𝑁 (0.‘𝐾)))
31 simpl1 1192 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
32 simpl2l 1227 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑃𝑄)
33 simprr 773 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (¬ 𝑠 𝑊𝜑))
34 cdlemefrs27.nb . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑁𝐵)
3531, 32, 21, 33, 34syl112anc 1376 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑁𝐵)
3622, 25, 11olj01 39226 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑁𝐵) → (𝑁 (0.‘𝐾)) = 𝑁)
3720, 35, 36syl2anc 584 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑁 (0.‘𝐾)) = 𝑁)
3830, 37eqtrd 2777 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑁 (𝑅 𝑊)) = 𝑁)
3938eqeq2d 2748 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (𝑧 = (𝑁 (𝑅 𝑊)) ↔ 𝑧 = 𝑁))
4029, 39imbi12d 344 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → (((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊))) ↔ (𝑠 = 𝑅𝑧 = 𝑁)))
4140pm5.74da 804 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊)))) ↔ ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → (𝑠 = 𝑅𝑧 = 𝑁))))
42 impexp 450 . . . . . . 7 ((((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ 𝑠 = 𝑅) → 𝑧 = 𝑁) ↔ ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → (𝑠 = 𝑅𝑧 = 𝑁)))
43 simp2rl 1243 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅𝐴)
44 simp2rr 1244 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ¬ 𝑅 𝑊)
45 simp3 1139 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝜓)
46 eleq1 2829 . . . . . . . . . . . . 13 (𝑠 = 𝑅 → (𝑠𝐴𝑅𝐴))
47 breq1 5146 . . . . . . . . . . . . . . 15 (𝑠 = 𝑅 → (𝑠 𝑊𝑅 𝑊))
4847notbid 318 . . . . . . . . . . . . . 14 (𝑠 = 𝑅 → (¬ 𝑠 𝑊 ↔ ¬ 𝑅 𝑊))
49 cdlemefrs27.eq . . . . . . . . . . . . . 14 (𝑠 = 𝑅 → (𝜑𝜓))
5048, 49anbi12d 632 . . . . . . . . . . . . 13 (𝑠 = 𝑅 → ((¬ 𝑠 𝑊𝜑) ↔ (¬ 𝑅 𝑊𝜓)))
5146, 50anbi12d 632 . . . . . . . . . . . 12 (𝑠 = 𝑅 → ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ↔ (𝑅𝐴 ∧ (¬ 𝑅 𝑊𝜓))))
5251biimprcd 250 . . . . . . . . . . 11 ((𝑅𝐴 ∧ (¬ 𝑅 𝑊𝜓)) → (𝑠 = 𝑅 → (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))))
5343, 44, 45, 52syl12anc 837 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (𝑠 = 𝑅 → (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))))
5453pm4.71rd 562 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (𝑠 = 𝑅 ↔ ((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ 𝑠 = 𝑅)))
5554imbi1d 341 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ((𝑠 = 𝑅𝑧 = 𝑁) ↔ (((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ 𝑠 = 𝑅) → 𝑧 = 𝑁)))
56 eqcom 2744 . . . . . . . . 9 (𝑧 = 𝑁𝑁 = 𝑧)
5756imbi2i 336 . . . . . . . 8 ((𝑠 = 𝑅𝑧 = 𝑁) ↔ (𝑠 = 𝑅𝑁 = 𝑧))
5855, 57bitr3di 286 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ((((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) ∧ 𝑠 = 𝑅) → 𝑧 = 𝑁) ↔ (𝑠 = 𝑅𝑁 = 𝑧)))
5942, 58bitr3id 285 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → (𝑠 = 𝑅𝑧 = 𝑁)) ↔ (𝑠 = 𝑅𝑁 = 𝑧)))
6041, 59bitrd 279 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (((𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑)) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊)))) ↔ (𝑠 = 𝑅𝑁 = 𝑧)))
616, 60bitrid 283 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ((𝑠𝐴 → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) ↔ (𝑠 = 𝑅𝑁 = 𝑧)))
6261albidv 1920 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠(𝑠𝐴 → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) ↔ ∀𝑠(𝑠 = 𝑅𝑁 = 𝑧)))
631, 62bitrid 283 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ∀𝑠(𝑠 = 𝑅𝑁 = 𝑧)))
64 nfcv 2905 . . . . 5 𝑠𝑧
6564csbiebg 3931 . . . 4 (𝑅𝐴 → (∀𝑠(𝑠 = 𝑅𝑁 = 𝑧) ↔ 𝑅 / 𝑠𝑁 = 𝑧))
6643, 65syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠(𝑠 = 𝑅𝑁 = 𝑧) ↔ 𝑅 / 𝑠𝑁 = 𝑧))
67 eqcom 2744 . . 3 (𝑅 / 𝑠𝑁 = 𝑧𝑧 = 𝑅 / 𝑠𝑁)
6866, 67bitrdi 287 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠(𝑠 = 𝑅𝑁 = 𝑧) ↔ 𝑧 = 𝑅 / 𝑠𝑁))
6963, 68bitrd 279 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ 𝑧 = 𝑅 / 𝑠𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087  wal 1538   = wceq 1540  wcel 2108  wne 2940  wral 3061  csb 3899   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357  meetcmee 18358  0.cp0 18468  OLcol 39175  Atomscatm 39264  HLchlt 39351  LHypclh 39986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-lat 18477  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-lhyp 39990
This theorem is referenced by:  cdlemefrs29bpre1  40399  cdlemefrs32fva  40402  cdlemefr29bpre0N  40408  cdlemefs29bpre0N  40418
  Copyright terms: Public domain W3C validator