| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-8 | Structured version Visualization version GIF version | ||
| Description: Define the number 8. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| df-8 | ⊢ 8 = (7 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c8 12186 | . 2 class 8 | |
| 2 | c7 12185 | . . 3 class 7 | |
| 3 | c1 11007 | . . 3 class 1 | |
| 4 | caddc 11009 | . . 3 class + | |
| 5 | 2, 3, 4 | co 7346 | . 2 class (7 + 1) |
| 6 | 1, 5 | wceq 1541 | 1 wff 8 = (7 + 1) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 8nn 12220 8re 12221 8cn 12222 8pos 12237 8m1e7 12253 7p1e8 12269 4p4e8 12275 5p3e8 12277 6p2e8 12279 7p2e9 12281 7lt8 12312 8p8e16 12674 9p8e17 12681 9p9e18 12682 8t8e64 12709 9t8e72 12716 log2ub 26886 3cubeslem3r 42790 rmydioph 43117 |
| Copyright terms: Public domain | W3C validator |