| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-8 | Structured version Visualization version GIF version | ||
| Description: Define the number 8. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| df-8 | ⊢ 8 = (7 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c8 12254 | . 2 class 8 | |
| 2 | c7 12253 | . . 3 class 7 | |
| 3 | c1 11076 | . . 3 class 1 | |
| 4 | caddc 11078 | . . 3 class + | |
| 5 | 2, 3, 4 | co 7390 | . 2 class (7 + 1) |
| 6 | 1, 5 | wceq 1540 | 1 wff 8 = (7 + 1) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 8nn 12288 8re 12289 8cn 12290 8pos 12305 8m1e7 12321 7p1e8 12337 4p4e8 12343 5p3e8 12345 6p2e8 12347 7p2e9 12349 7lt8 12380 8p8e16 12742 9p8e17 12749 9p9e18 12750 8t8e64 12777 9t8e72 12784 log2ub 26866 3cubeslem3r 42682 rmydioph 43010 |
| Copyright terms: Public domain | W3C validator |