| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-8 | Structured version Visualization version GIF version | ||
| Description: Define the number 8. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| df-8 | ⊢ 8 = (7 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c8 12223 | . 2 class 8 | |
| 2 | c7 12222 | . . 3 class 7 | |
| 3 | c1 11045 | . . 3 class 1 | |
| 4 | caddc 11047 | . . 3 class + | |
| 5 | 2, 3, 4 | co 7369 | . 2 class (7 + 1) |
| 6 | 1, 5 | wceq 1540 | 1 wff 8 = (7 + 1) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 8nn 12257 8re 12258 8cn 12259 8pos 12274 8m1e7 12290 7p1e8 12306 4p4e8 12312 5p3e8 12314 6p2e8 12316 7p2e9 12318 7lt8 12349 8p8e16 12711 9p8e17 12718 9p9e18 12719 8t8e64 12746 9t8e72 12753 log2ub 26835 3cubeslem3r 42648 rmydioph 42976 |
| Copyright terms: Public domain | W3C validator |