| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-8 | Structured version Visualization version GIF version | ||
| Description: Define the number 8. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| df-8 | ⊢ 8 = (7 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c8 12189 | . 2 class 8 | |
| 2 | c7 12188 | . . 3 class 7 | |
| 3 | c1 11010 | . . 3 class 1 | |
| 4 | caddc 11012 | . . 3 class + | |
| 5 | 2, 3, 4 | co 7349 | . 2 class (7 + 1) |
| 6 | 1, 5 | wceq 1540 | 1 wff 8 = (7 + 1) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 8nn 12223 8re 12224 8cn 12225 8pos 12240 8m1e7 12256 7p1e8 12272 4p4e8 12278 5p3e8 12280 6p2e8 12282 7p2e9 12284 7lt8 12315 8p8e16 12677 9p8e17 12684 9p9e18 12685 8t8e64 12712 9t8e72 12719 log2ub 26857 3cubeslem3r 42664 rmydioph 42991 |
| Copyright terms: Public domain | W3C validator |