| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8cn | Structured version Visualization version GIF version | ||
| Description: The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 8cn | ⊢ 8 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12255 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7cn 12280 | . . 3 ⊢ 7 ∈ ℂ | |
| 3 | ax-1cn 11126 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11180 | . 2 ⊢ (7 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 8 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 1c1 11069 + caddc 11071 7c7 12246 8c8 12247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 |
| This theorem is referenced by: 9cn 12286 9m1e8 12315 8p2e10 12729 8t2e16 12764 8t5e40 12767 cos2bnd 16156 2exp11 17060 2exp16 17061 139prm 17094 163prm 17095 317prm 17096 631prm 17097 1259lem2 17102 1259lem3 17103 1259lem4 17104 1259lem5 17105 2503lem2 17108 2503lem3 17109 2503prm 17110 4001lem1 17111 4001lem2 17112 4001prm 17115 quart1cl 26764 quart1lem 26765 quart1 26766 quartlem1 26767 log2tlbnd 26855 log2ublem3 26858 log2ub 26859 bposlem8 27202 lgsdir2lem1 27236 lgsdir2lem5 27240 2lgslem3a 27307 2lgslem3b 27308 2lgslem3c 27309 2lgslem3d 27310 2lgslem3a1 27311 2lgslem3b1 27312 2lgslem3c1 27313 2lgslem3d1 27314 2lgsoddprmlem1 27319 2lgsoddprmlem2 27320 2lgsoddprmlem3a 27321 2lgsoddprmlem3b 27322 2lgsoddprmlem3c 27323 2lgsoddprmlem3d 27324 ex-exp 30379 hgt750lem2 34643 420lcm8e840 41999 3exp7 42041 3lexlogpow5ineq1 42042 3lexlogpow5ineq5 42048 aks4d1p1 42064 sq8 42285 ex-decpmul 42294 resqrtvalex 43634 imsqrtvalex 43635 fmtno5lem4 47557 257prm 47562 fmtnoprmfac2lem1 47567 fmtno4prmfac 47573 fmtno4nprmfac193 47575 fmtno5faclem3 47582 m3prm 47593 139prmALT 47597 127prm 47600 m7prm 47601 5tcu2e40 47616 2exp340mod341 47734 8exp8mod9 47737 nfermltl8rev 47743 evengpop3 47799 tgoldbachlt 47817 |
| Copyright terms: Public domain | W3C validator |