| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8cn | Structured version Visualization version GIF version | ||
| Description: The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 8cn | ⊢ 8 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12314 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7cn 12339 | . . 3 ⊢ 7 ∈ ℂ | |
| 3 | ax-1cn 11192 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11246 | . 2 ⊢ (7 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2831 | 1 ⊢ 8 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7410 ℂcc 11132 1c1 11135 + caddc 11137 7c7 12305 8c8 12306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-1cn 11192 ax-addcl 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-clel 2810 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 |
| This theorem is referenced by: 9cn 12345 9m1e8 12379 8p2e10 12793 8t2e16 12828 8t5e40 12831 cos2bnd 16211 2exp11 17114 2exp16 17115 139prm 17148 163prm 17149 317prm 17150 631prm 17151 1259lem2 17156 1259lem3 17157 1259lem4 17158 1259lem5 17159 2503lem2 17162 2503lem3 17163 2503prm 17164 4001lem1 17165 4001lem2 17166 4001prm 17169 quart1cl 26821 quart1lem 26822 quart1 26823 quartlem1 26824 log2tlbnd 26912 log2ublem3 26915 log2ub 26916 bposlem8 27259 lgsdir2lem1 27293 lgsdir2lem5 27297 2lgslem3a 27364 2lgslem3b 27365 2lgslem3c 27366 2lgslem3d 27367 2lgslem3a1 27368 2lgslem3b1 27369 2lgslem3c1 27370 2lgslem3d1 27371 2lgsoddprmlem1 27376 2lgsoddprmlem2 27377 2lgsoddprmlem3a 27378 2lgsoddprmlem3b 27379 2lgsoddprmlem3c 27380 2lgsoddprmlem3d 27381 ex-exp 30436 hgt750lem2 34689 420lcm8e840 42029 3exp7 42071 3lexlogpow5ineq1 42072 3lexlogpow5ineq5 42078 aks4d1p1 42094 sq8 42313 ex-decpmul 42322 resqrtvalex 43636 imsqrtvalex 43637 fmtno5lem4 47537 257prm 47542 fmtnoprmfac2lem1 47547 fmtno4prmfac 47553 fmtno4nprmfac193 47555 fmtno5faclem3 47562 m3prm 47573 139prmALT 47577 127prm 47580 m7prm 47581 5tcu2e40 47596 2exp340mod341 47714 8exp8mod9 47717 nfermltl8rev 47723 evengpop3 47779 tgoldbachlt 47797 |
| Copyright terms: Public domain | W3C validator |