Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 8cn | Structured version Visualization version GIF version |
Description: The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
8cn | ⊢ 8 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 12051 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7cn 12076 | . . 3 ⊢ 7 ∈ ℂ | |
3 | ax-1cn 10938 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 10990 | . 2 ⊢ (7 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2836 | 1 ⊢ 8 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 (class class class)co 7284 ℂcc 10878 1c1 10881 + caddc 10883 7c7 12042 8c8 12043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 ax-1cn 10938 ax-addcl 10940 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 df-clel 2817 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-8 12051 |
This theorem is referenced by: 9cn 12082 9m1e8 12116 8p2e10 12526 8t2e16 12561 8t5e40 12564 cos2bnd 15906 2exp11 16800 2exp16 16801 139prm 16834 163prm 16835 317prm 16836 631prm 16837 1259lem2 16842 1259lem3 16843 1259lem4 16844 1259lem5 16845 2503lem2 16848 2503lem3 16849 2503prm 16850 4001lem1 16851 4001lem2 16852 4001prm 16855 quart1cl 26013 quart1lem 26014 quart1 26015 quartlem1 26016 log2tlbnd 26104 log2ublem3 26107 log2ub 26108 bposlem8 26448 lgsdir2lem1 26482 lgsdir2lem5 26486 2lgslem3a 26553 2lgslem3b 26554 2lgslem3c 26555 2lgslem3d 26556 2lgslem3a1 26557 2lgslem3b1 26558 2lgslem3c1 26559 2lgslem3d1 26560 2lgsoddprmlem1 26565 2lgsoddprmlem2 26566 2lgsoddprmlem3a 26567 2lgsoddprmlem3b 26568 2lgsoddprmlem3c 26569 2lgsoddprmlem3d 26570 ex-exp 28823 hgt750lem2 32641 420lcm8e840 40026 3exp7 40068 3lexlogpow5ineq1 40069 3lexlogpow5ineq5 40075 aks4d1p1 40091 ex-decpmul 40327 resqrtvalex 41260 imsqrtvalex 41261 fmtno5lem4 45019 257prm 45024 fmtnoprmfac2lem1 45029 fmtno4prmfac 45035 fmtno4nprmfac193 45037 fmtno5faclem3 45044 m3prm 45055 139prmALT 45059 127prm 45062 m7prm 45063 5tcu2e40 45078 2exp340mod341 45196 8exp8mod9 45199 nfermltl8rev 45205 evengpop3 45261 tgoldbachlt 45279 |
Copyright terms: Public domain | W3C validator |