![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8cn | Structured version Visualization version GIF version |
Description: The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
8cn | ⊢ 8 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 12277 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7cn 12302 | . . 3 ⊢ 7 ∈ ℂ | |
3 | ax-1cn 11164 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11216 | . 2 ⊢ (7 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2829 | 1 ⊢ 8 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7405 ℂcc 11104 1c1 11107 + caddc 11109 7c7 12268 8c8 12269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-1cn 11164 ax-addcl 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 df-clel 2810 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 |
This theorem is referenced by: 9cn 12308 9m1e8 12342 8p2e10 12753 8t2e16 12788 8t5e40 12791 cos2bnd 16127 2exp11 17019 2exp16 17020 139prm 17053 163prm 17054 317prm 17055 631prm 17056 1259lem2 17061 1259lem3 17062 1259lem4 17063 1259lem5 17064 2503lem2 17067 2503lem3 17068 2503prm 17069 4001lem1 17070 4001lem2 17071 4001prm 17074 quart1cl 26348 quart1lem 26349 quart1 26350 quartlem1 26351 log2tlbnd 26439 log2ublem3 26442 log2ub 26443 bposlem8 26783 lgsdir2lem1 26817 lgsdir2lem5 26821 2lgslem3a 26888 2lgslem3b 26889 2lgslem3c 26890 2lgslem3d 26891 2lgslem3a1 26892 2lgslem3b1 26893 2lgslem3c1 26894 2lgslem3d1 26895 2lgsoddprmlem1 26900 2lgsoddprmlem2 26901 2lgsoddprmlem3a 26902 2lgsoddprmlem3b 26903 2lgsoddprmlem3c 26904 2lgsoddprmlem3d 26905 ex-exp 29692 hgt750lem2 33652 420lcm8e840 40864 3exp7 40906 3lexlogpow5ineq1 40907 3lexlogpow5ineq5 40913 aks4d1p1 40929 ex-decpmul 41201 resqrtvalex 42381 imsqrtvalex 42382 fmtno5lem4 46210 257prm 46215 fmtnoprmfac2lem1 46220 fmtno4prmfac 46226 fmtno4nprmfac193 46228 fmtno5faclem3 46235 m3prm 46246 139prmALT 46250 127prm 46253 m7prm 46254 5tcu2e40 46269 2exp340mod341 46387 8exp8mod9 46390 nfermltl8rev 46396 evengpop3 46452 tgoldbachlt 46470 |
Copyright terms: Public domain | W3C validator |