| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8cn | Structured version Visualization version GIF version | ||
| Description: The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 8cn | ⊢ 8 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12194 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7cn 12219 | . . 3 ⊢ 7 ∈ ℂ | |
| 3 | ax-1cn 11064 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11118 | . 2 ⊢ (7 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 8 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 1c1 11007 + caddc 11009 7c7 12185 8c8 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 |
| This theorem is referenced by: 9cn 12225 9m1e8 12254 8p2e10 12668 8t2e16 12703 8t5e40 12706 cos2bnd 16097 2exp11 17001 2exp16 17002 139prm 17035 163prm 17036 317prm 17037 631prm 17038 1259lem2 17043 1259lem3 17044 1259lem4 17045 1259lem5 17046 2503lem2 17049 2503lem3 17050 2503prm 17051 4001lem1 17052 4001lem2 17053 4001prm 17056 quart1cl 26791 quart1lem 26792 quart1 26793 quartlem1 26794 log2tlbnd 26882 log2ublem3 26885 log2ub 26886 bposlem8 27229 lgsdir2lem1 27263 lgsdir2lem5 27267 2lgslem3a 27334 2lgslem3b 27335 2lgslem3c 27336 2lgslem3d 27337 2lgslem3a1 27338 2lgslem3b1 27339 2lgslem3c1 27340 2lgslem3d1 27341 2lgsoddprmlem1 27346 2lgsoddprmlem2 27347 2lgsoddprmlem3a 27348 2lgsoddprmlem3b 27349 2lgsoddprmlem3c 27350 2lgsoddprmlem3d 27351 ex-exp 30430 hgt750lem2 34665 420lcm8e840 42114 3exp7 42156 3lexlogpow5ineq1 42157 3lexlogpow5ineq5 42163 aks4d1p1 42179 sq8 42400 ex-decpmul 42409 resqrtvalex 43748 imsqrtvalex 43749 fmtno5lem4 47666 257prm 47671 fmtnoprmfac2lem1 47676 fmtno4prmfac 47682 fmtno4nprmfac193 47684 fmtno5faclem3 47691 m3prm 47702 139prmALT 47706 127prm 47709 m7prm 47710 5tcu2e40 47725 2exp340mod341 47843 8exp8mod9 47846 nfermltl8rev 47852 evengpop3 47908 tgoldbachlt 47926 |
| Copyright terms: Public domain | W3C validator |