MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  8cn Structured version   Visualization version   GIF version

Theorem 8cn 12000
Description: The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.)
Assertion
Ref Expression
8cn 8 ∈ ℂ

Proof of Theorem 8cn
StepHypRef Expression
1 df-8 11972 . 2 8 = (7 + 1)
2 7cn 11997 . . 3 7 ∈ ℂ
3 ax-1cn 10860 . . 3 1 ∈ ℂ
42, 3addcli 10912 . 2 (7 + 1) ∈ ℂ
51, 4eqeltri 2835 1 8 ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  (class class class)co 7255  cc 10800  1c1 10803   + caddc 10805  7c7 11963  8c8 11964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-clel 2817  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972
This theorem is referenced by:  9cn  12003  9m1e8  12037  8p2e10  12446  8t2e16  12481  8t5e40  12484  cos2bnd  15825  2exp11  16719  2exp16  16720  139prm  16753  163prm  16754  317prm  16755  631prm  16756  1259lem2  16761  1259lem3  16762  1259lem4  16763  1259lem5  16764  2503lem2  16767  2503lem3  16768  2503prm  16769  4001lem1  16770  4001lem2  16771  4001prm  16774  quart1cl  25909  quart1lem  25910  quart1  25911  quartlem1  25912  log2tlbnd  26000  log2ublem3  26003  log2ub  26004  bposlem8  26344  lgsdir2lem1  26378  lgsdir2lem5  26382  2lgslem3a  26449  2lgslem3b  26450  2lgslem3c  26451  2lgslem3d  26452  2lgslem3a1  26453  2lgslem3b1  26454  2lgslem3c1  26455  2lgslem3d1  26456  2lgsoddprmlem1  26461  2lgsoddprmlem2  26462  2lgsoddprmlem3a  26463  2lgsoddprmlem3b  26464  2lgsoddprmlem3c  26465  2lgsoddprmlem3d  26466  ex-exp  28715  hgt750lem2  32532  420lcm8e840  39947  3exp7  39989  3lexlogpow5ineq1  39990  3lexlogpow5ineq5  39996  aks4d1p1  40012  ex-decpmul  40241  resqrtvalex  41142  imsqrtvalex  41143  fmtno5lem4  44896  257prm  44901  fmtnoprmfac2lem1  44906  fmtno4prmfac  44912  fmtno4nprmfac193  44914  fmtno5faclem3  44921  m3prm  44932  139prmALT  44936  127prm  44939  m7prm  44940  5tcu2e40  44955  2exp340mod341  45073  8exp8mod9  45076  nfermltl8rev  45082  evengpop3  45138  tgoldbachlt  45156
  Copyright terms: Public domain W3C validator