Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 8cn | Structured version Visualization version GIF version |
Description: The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
8cn | ⊢ 8 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 12148 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7cn 12173 | . . 3 ⊢ 7 ∈ ℂ | |
3 | ax-1cn 11035 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11087 | . 2 ⊢ (7 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2834 | 1 ⊢ 8 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7342 ℂcc 10975 1c1 10978 + caddc 10980 7c7 12139 8c8 12140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-1cn 11035 ax-addcl 11037 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1782 df-cleq 2729 df-clel 2815 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-7 12147 df-8 12148 |
This theorem is referenced by: 9cn 12179 9m1e8 12213 8p2e10 12623 8t2e16 12658 8t5e40 12661 cos2bnd 15997 2exp11 16889 2exp16 16890 139prm 16923 163prm 16924 317prm 16925 631prm 16926 1259lem2 16931 1259lem3 16932 1259lem4 16933 1259lem5 16934 2503lem2 16937 2503lem3 16938 2503prm 16939 4001lem1 16940 4001lem2 16941 4001prm 16944 quart1cl 26110 quart1lem 26111 quart1 26112 quartlem1 26113 log2tlbnd 26201 log2ublem3 26204 log2ub 26205 bposlem8 26545 lgsdir2lem1 26579 lgsdir2lem5 26583 2lgslem3a 26650 2lgslem3b 26651 2lgslem3c 26652 2lgslem3d 26653 2lgslem3a1 26654 2lgslem3b1 26655 2lgslem3c1 26656 2lgslem3d1 26657 2lgsoddprmlem1 26662 2lgsoddprmlem2 26663 2lgsoddprmlem3a 26664 2lgsoddprmlem3b 26665 2lgsoddprmlem3c 26666 2lgsoddprmlem3d 26667 ex-exp 29102 hgt750lem2 32930 420lcm8e840 40322 3exp7 40364 3lexlogpow5ineq1 40365 3lexlogpow5ineq5 40371 aks4d1p1 40387 ex-decpmul 40629 resqrtvalex 41624 imsqrtvalex 41625 fmtno5lem4 45424 257prm 45429 fmtnoprmfac2lem1 45434 fmtno4prmfac 45440 fmtno4nprmfac193 45442 fmtno5faclem3 45449 m3prm 45460 139prmALT 45464 127prm 45467 m7prm 45468 5tcu2e40 45483 2exp340mod341 45601 8exp8mod9 45604 nfermltl8rev 45610 evengpop3 45666 tgoldbachlt 45684 |
Copyright terms: Public domain | W3C validator |