| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8cn | Structured version Visualization version GIF version | ||
| Description: The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 8cn | ⊢ 8 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12231 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7cn 12256 | . . 3 ⊢ 7 ∈ ℂ | |
| 3 | ax-1cn 11102 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11156 | . 2 ⊢ (7 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 8 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 1c1 11045 + caddc 11047 7c7 12222 8c8 12223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-addcl 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 |
| This theorem is referenced by: 9cn 12262 9m1e8 12291 8p2e10 12705 8t2e16 12740 8t5e40 12743 cos2bnd 16132 2exp11 17036 2exp16 17037 139prm 17070 163prm 17071 317prm 17072 631prm 17073 1259lem2 17078 1259lem3 17079 1259lem4 17080 1259lem5 17081 2503lem2 17084 2503lem3 17085 2503prm 17086 4001lem1 17087 4001lem2 17088 4001prm 17091 quart1cl 26797 quart1lem 26798 quart1 26799 quartlem1 26800 log2tlbnd 26888 log2ublem3 26891 log2ub 26892 bposlem8 27235 lgsdir2lem1 27269 lgsdir2lem5 27273 2lgslem3a 27340 2lgslem3b 27341 2lgslem3c 27342 2lgslem3d 27343 2lgslem3a1 27344 2lgslem3b1 27345 2lgslem3c1 27346 2lgslem3d1 27347 2lgsoddprmlem1 27352 2lgsoddprmlem2 27353 2lgsoddprmlem3a 27354 2lgsoddprmlem3b 27355 2lgsoddprmlem3c 27356 2lgsoddprmlem3d 27357 ex-exp 30429 hgt750lem2 34636 420lcm8e840 41992 3exp7 42034 3lexlogpow5ineq1 42035 3lexlogpow5ineq5 42041 aks4d1p1 42057 sq8 42278 ex-decpmul 42287 resqrtvalex 43627 imsqrtvalex 43628 fmtno5lem4 47550 257prm 47555 fmtnoprmfac2lem1 47560 fmtno4prmfac 47566 fmtno4nprmfac193 47568 fmtno5faclem3 47575 m3prm 47586 139prmALT 47590 127prm 47593 m7prm 47594 5tcu2e40 47609 2exp340mod341 47727 8exp8mod9 47730 nfermltl8rev 47736 evengpop3 47792 tgoldbachlt 47810 |
| Copyright terms: Public domain | W3C validator |