![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8cn | Structured version Visualization version GIF version |
Description: The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
8cn | ⊢ 8 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 12281 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7cn 12306 | . . 3 ⊢ 7 ∈ ℂ | |
3 | ax-1cn 11168 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11220 | . 2 ⊢ (7 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2830 | 1 ⊢ 8 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 (class class class)co 7409 ℂcc 11108 1c1 11111 + caddc 11113 7c7 12272 8c8 12273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-clel 2811 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 |
This theorem is referenced by: 9cn 12312 9m1e8 12346 8p2e10 12757 8t2e16 12792 8t5e40 12795 cos2bnd 16131 2exp11 17023 2exp16 17024 139prm 17057 163prm 17058 317prm 17059 631prm 17060 1259lem2 17065 1259lem3 17066 1259lem4 17067 1259lem5 17068 2503lem2 17071 2503lem3 17072 2503prm 17073 4001lem1 17074 4001lem2 17075 4001prm 17078 quart1cl 26359 quart1lem 26360 quart1 26361 quartlem1 26362 log2tlbnd 26450 log2ublem3 26453 log2ub 26454 bposlem8 26794 lgsdir2lem1 26828 lgsdir2lem5 26832 2lgslem3a 26899 2lgslem3b 26900 2lgslem3c 26901 2lgslem3d 26902 2lgslem3a1 26903 2lgslem3b1 26904 2lgslem3c1 26905 2lgslem3d1 26906 2lgsoddprmlem1 26911 2lgsoddprmlem2 26912 2lgsoddprmlem3a 26913 2lgsoddprmlem3b 26914 2lgsoddprmlem3c 26915 2lgsoddprmlem3d 26916 ex-exp 29703 hgt750lem2 33664 420lcm8e840 40876 3exp7 40918 3lexlogpow5ineq1 40919 3lexlogpow5ineq5 40925 aks4d1p1 40941 ex-decpmul 41206 resqrtvalex 42396 imsqrtvalex 42397 fmtno5lem4 46224 257prm 46229 fmtnoprmfac2lem1 46234 fmtno4prmfac 46240 fmtno4nprmfac193 46242 fmtno5faclem3 46249 m3prm 46260 139prmALT 46264 127prm 46267 m7prm 46268 5tcu2e40 46283 2exp340mod341 46401 8exp8mod9 46404 nfermltl8rev 46410 evengpop3 46466 tgoldbachlt 46484 |
Copyright terms: Public domain | W3C validator |