![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8cn | Structured version Visualization version GIF version |
Description: The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
8cn | ⊢ 8 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 12333 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7cn 12358 | . . 3 ⊢ 7 ∈ ℂ | |
3 | ax-1cn 11211 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11265 | . 2 ⊢ (7 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 8 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 1c1 11154 + caddc 11156 7c7 12324 8c8 12325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-1cn 11211 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-clel 2814 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 |
This theorem is referenced by: 9cn 12364 9m1e8 12398 8p2e10 12811 8t2e16 12846 8t5e40 12849 cos2bnd 16221 2exp11 17124 2exp16 17125 139prm 17158 163prm 17159 317prm 17160 631prm 17161 1259lem2 17166 1259lem3 17167 1259lem4 17168 1259lem5 17169 2503lem2 17172 2503lem3 17173 2503prm 17174 4001lem1 17175 4001lem2 17176 4001prm 17179 quart1cl 26912 quart1lem 26913 quart1 26914 quartlem1 26915 log2tlbnd 27003 log2ublem3 27006 log2ub 27007 bposlem8 27350 lgsdir2lem1 27384 lgsdir2lem5 27388 2lgslem3a 27455 2lgslem3b 27456 2lgslem3c 27457 2lgslem3d 27458 2lgslem3a1 27459 2lgslem3b1 27460 2lgslem3c1 27461 2lgslem3d1 27462 2lgsoddprmlem1 27467 2lgsoddprmlem2 27468 2lgsoddprmlem3a 27469 2lgsoddprmlem3b 27470 2lgsoddprmlem3c 27471 2lgsoddprmlem3d 27472 ex-exp 30479 hgt750lem2 34646 420lcm8e840 41993 3exp7 42035 3lexlogpow5ineq1 42036 3lexlogpow5ineq5 42042 aks4d1p1 42058 sq8 42310 ex-decpmul 42319 resqrtvalex 43635 imsqrtvalex 43636 fmtno5lem4 47481 257prm 47486 fmtnoprmfac2lem1 47491 fmtno4prmfac 47497 fmtno4nprmfac193 47499 fmtno5faclem3 47506 m3prm 47517 139prmALT 47521 127prm 47524 m7prm 47525 5tcu2e40 47540 2exp340mod341 47658 8exp8mod9 47661 nfermltl8rev 47667 evengpop3 47723 tgoldbachlt 47741 |
Copyright terms: Public domain | W3C validator |