MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  8cn Structured version   Visualization version   GIF version

Theorem 8cn 12259
Description: The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.)
Assertion
Ref Expression
8cn 8 ∈ ℂ

Proof of Theorem 8cn
StepHypRef Expression
1 df-8 12231 . 2 8 = (7 + 1)
2 7cn 12256 . . 3 7 ∈ ℂ
3 ax-1cn 11102 . . 3 1 ∈ ℂ
42, 3addcli 11156 . 2 (7 + 1) ∈ ℂ
51, 4eqeltri 2824 1 8 ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  (class class class)co 7369  cc 11042  1c1 11045   + caddc 11047  7c7 12222  8c8 12223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-1cn 11102  ax-addcl 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-clel 2803  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231
This theorem is referenced by:  9cn  12262  9m1e8  12291  8p2e10  12705  8t2e16  12740  8t5e40  12743  cos2bnd  16132  2exp11  17036  2exp16  17037  139prm  17070  163prm  17071  317prm  17072  631prm  17073  1259lem2  17078  1259lem3  17079  1259lem4  17080  1259lem5  17081  2503lem2  17084  2503lem3  17085  2503prm  17086  4001lem1  17087  4001lem2  17088  4001prm  17091  quart1cl  26740  quart1lem  26741  quart1  26742  quartlem1  26743  log2tlbnd  26831  log2ublem3  26834  log2ub  26835  bposlem8  27178  lgsdir2lem1  27212  lgsdir2lem5  27216  2lgslem3a  27283  2lgslem3b  27284  2lgslem3c  27285  2lgslem3d  27286  2lgslem3a1  27287  2lgslem3b1  27288  2lgslem3c1  27289  2lgslem3d1  27290  2lgsoddprmlem1  27295  2lgsoddprmlem2  27296  2lgsoddprmlem3a  27297  2lgsoddprmlem3b  27298  2lgsoddprmlem3c  27299  2lgsoddprmlem3d  27300  ex-exp  30352  hgt750lem2  34616  420lcm8e840  41972  3exp7  42014  3lexlogpow5ineq1  42015  3lexlogpow5ineq5  42021  aks4d1p1  42037  sq8  42258  ex-decpmul  42267  resqrtvalex  43607  imsqrtvalex  43608  fmtno5lem4  47530  257prm  47535  fmtnoprmfac2lem1  47540  fmtno4prmfac  47546  fmtno4nprmfac193  47548  fmtno5faclem3  47555  m3prm  47566  139prmALT  47570  127prm  47573  m7prm  47574  5tcu2e40  47589  2exp340mod341  47707  8exp8mod9  47710  nfermltl8rev  47716  evengpop3  47772  tgoldbachlt  47790
  Copyright terms: Public domain W3C validator