![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8cn | Structured version Visualization version GIF version |
Description: The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
8cn | ⊢ 8 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 12362 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7cn 12387 | . . 3 ⊢ 7 ∈ ℂ | |
3 | ax-1cn 11242 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11296 | . 2 ⊢ (7 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ 8 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 7c7 12353 8c8 12354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 |
This theorem is referenced by: 9cn 12393 9m1e8 12427 8p2e10 12838 8t2e16 12873 8t5e40 12876 cos2bnd 16236 2exp11 17137 2exp16 17138 139prm 17171 163prm 17172 317prm 17173 631prm 17174 1259lem2 17179 1259lem3 17180 1259lem4 17181 1259lem5 17182 2503lem2 17185 2503lem3 17186 2503prm 17187 4001lem1 17188 4001lem2 17189 4001prm 17192 quart1cl 26915 quart1lem 26916 quart1 26917 quartlem1 26918 log2tlbnd 27006 log2ublem3 27009 log2ub 27010 bposlem8 27353 lgsdir2lem1 27387 lgsdir2lem5 27391 2lgslem3a 27458 2lgslem3b 27459 2lgslem3c 27460 2lgslem3d 27461 2lgslem3a1 27462 2lgslem3b1 27463 2lgslem3c1 27464 2lgslem3d1 27465 2lgsoddprmlem1 27470 2lgsoddprmlem2 27471 2lgsoddprmlem3a 27472 2lgsoddprmlem3b 27473 2lgsoddprmlem3c 27474 2lgsoddprmlem3d 27475 ex-exp 30482 hgt750lem2 34629 420lcm8e840 41968 3exp7 42010 3lexlogpow5ineq1 42011 3lexlogpow5ineq5 42017 aks4d1p1 42033 sq8 42285 ex-decpmul 42294 resqrtvalex 43607 imsqrtvalex 43608 fmtno5lem4 47430 257prm 47435 fmtnoprmfac2lem1 47440 fmtno4prmfac 47446 fmtno4nprmfac193 47448 fmtno5faclem3 47455 m3prm 47466 139prmALT 47470 127prm 47473 m7prm 47474 5tcu2e40 47489 2exp340mod341 47607 8exp8mod9 47610 nfermltl8rev 47616 evengpop3 47672 tgoldbachlt 47690 |
Copyright terms: Public domain | W3C validator |