| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8cn | Structured version Visualization version GIF version | ||
| Description: The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 8cn | ⊢ 8 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12262 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7cn 12287 | . . 3 ⊢ 7 ∈ ℂ | |
| 3 | ax-1cn 11133 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11187 | . 2 ⊢ (7 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 8 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 1c1 11076 + caddc 11078 7c7 12253 8c8 12254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 |
| This theorem is referenced by: 9cn 12293 9m1e8 12322 8p2e10 12736 8t2e16 12771 8t5e40 12774 cos2bnd 16163 2exp11 17067 2exp16 17068 139prm 17101 163prm 17102 317prm 17103 631prm 17104 1259lem2 17109 1259lem3 17110 1259lem4 17111 1259lem5 17112 2503lem2 17115 2503lem3 17116 2503prm 17117 4001lem1 17118 4001lem2 17119 4001prm 17122 quart1cl 26771 quart1lem 26772 quart1 26773 quartlem1 26774 log2tlbnd 26862 log2ublem3 26865 log2ub 26866 bposlem8 27209 lgsdir2lem1 27243 lgsdir2lem5 27247 2lgslem3a 27314 2lgslem3b 27315 2lgslem3c 27316 2lgslem3d 27317 2lgslem3a1 27318 2lgslem3b1 27319 2lgslem3c1 27320 2lgslem3d1 27321 2lgsoddprmlem1 27326 2lgsoddprmlem2 27327 2lgsoddprmlem3a 27328 2lgsoddprmlem3b 27329 2lgsoddprmlem3c 27330 2lgsoddprmlem3d 27331 ex-exp 30386 hgt750lem2 34650 420lcm8e840 42006 3exp7 42048 3lexlogpow5ineq1 42049 3lexlogpow5ineq5 42055 aks4d1p1 42071 sq8 42292 ex-decpmul 42301 resqrtvalex 43641 imsqrtvalex 43642 fmtno5lem4 47561 257prm 47566 fmtnoprmfac2lem1 47571 fmtno4prmfac 47577 fmtno4nprmfac193 47579 fmtno5faclem3 47586 m3prm 47597 139prmALT 47601 127prm 47604 m7prm 47605 5tcu2e40 47620 2exp340mod341 47738 8exp8mod9 47741 nfermltl8rev 47747 evengpop3 47803 tgoldbachlt 47821 |
| Copyright terms: Public domain | W3C validator |