| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8cn | Structured version Visualization version GIF version | ||
| Description: The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 8cn | ⊢ 8 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12197 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7cn 12222 | . . 3 ⊢ 7 ∈ ℂ | |
| 3 | ax-1cn 11067 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11121 | . 2 ⊢ (7 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 8 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 1c1 11010 + caddc 11012 7c7 12188 8c8 12189 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11067 ax-addcl 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 |
| This theorem is referenced by: 9cn 12228 9m1e8 12257 8p2e10 12671 8t2e16 12706 8t5e40 12709 cos2bnd 16097 2exp11 17001 2exp16 17002 139prm 17035 163prm 17036 317prm 17037 631prm 17038 1259lem2 17043 1259lem3 17044 1259lem4 17045 1259lem5 17046 2503lem2 17049 2503lem3 17050 2503prm 17051 4001lem1 17052 4001lem2 17053 4001prm 17056 quart1cl 26762 quart1lem 26763 quart1 26764 quartlem1 26765 log2tlbnd 26853 log2ublem3 26856 log2ub 26857 bposlem8 27200 lgsdir2lem1 27234 lgsdir2lem5 27238 2lgslem3a 27305 2lgslem3b 27306 2lgslem3c 27307 2lgslem3d 27308 2lgslem3a1 27309 2lgslem3b1 27310 2lgslem3c1 27311 2lgslem3d1 27312 2lgsoddprmlem1 27317 2lgsoddprmlem2 27318 2lgsoddprmlem3a 27319 2lgsoddprmlem3b 27320 2lgsoddprmlem3c 27321 2lgsoddprmlem3d 27322 ex-exp 30394 hgt750lem2 34620 420lcm8e840 41988 3exp7 42030 3lexlogpow5ineq1 42031 3lexlogpow5ineq5 42037 aks4d1p1 42053 sq8 42274 ex-decpmul 42283 resqrtvalex 43622 imsqrtvalex 43623 fmtno5lem4 47544 257prm 47549 fmtnoprmfac2lem1 47554 fmtno4prmfac 47560 fmtno4nprmfac193 47562 fmtno5faclem3 47569 m3prm 47580 139prmALT 47584 127prm 47587 m7prm 47588 5tcu2e40 47603 2exp340mod341 47721 8exp8mod9 47724 nfermltl8rev 47730 evengpop3 47786 tgoldbachlt 47804 |
| Copyright terms: Public domain | W3C validator |