Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 8cn | Structured version Visualization version GIF version |
Description: The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
8cn | ⊢ 8 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 11972 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7cn 11997 | . . 3 ⊢ 7 ∈ ℂ | |
3 | ax-1cn 10860 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 10912 | . 2 ⊢ (7 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 8 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 1c1 10803 + caddc 10805 7c7 11963 8c8 11964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 |
This theorem is referenced by: 9cn 12003 9m1e8 12037 8p2e10 12446 8t2e16 12481 8t5e40 12484 cos2bnd 15825 2exp11 16719 2exp16 16720 139prm 16753 163prm 16754 317prm 16755 631prm 16756 1259lem2 16761 1259lem3 16762 1259lem4 16763 1259lem5 16764 2503lem2 16767 2503lem3 16768 2503prm 16769 4001lem1 16770 4001lem2 16771 4001prm 16774 quart1cl 25909 quart1lem 25910 quart1 25911 quartlem1 25912 log2tlbnd 26000 log2ublem3 26003 log2ub 26004 bposlem8 26344 lgsdir2lem1 26378 lgsdir2lem5 26382 2lgslem3a 26449 2lgslem3b 26450 2lgslem3c 26451 2lgslem3d 26452 2lgslem3a1 26453 2lgslem3b1 26454 2lgslem3c1 26455 2lgslem3d1 26456 2lgsoddprmlem1 26461 2lgsoddprmlem2 26462 2lgsoddprmlem3a 26463 2lgsoddprmlem3b 26464 2lgsoddprmlem3c 26465 2lgsoddprmlem3d 26466 ex-exp 28715 hgt750lem2 32532 420lcm8e840 39947 3exp7 39989 3lexlogpow5ineq1 39990 3lexlogpow5ineq5 39996 aks4d1p1 40012 ex-decpmul 40241 resqrtvalex 41142 imsqrtvalex 41143 fmtno5lem4 44896 257prm 44901 fmtnoprmfac2lem1 44906 fmtno4prmfac 44912 fmtno4nprmfac193 44914 fmtno5faclem3 44921 m3prm 44932 139prmALT 44936 127prm 44939 m7prm 44940 5tcu2e40 44955 2exp340mod341 45073 8exp8mod9 45076 nfermltl8rev 45082 evengpop3 45138 tgoldbachlt 45156 |
Copyright terms: Public domain | W3C validator |