![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8nn | Structured version Visualization version GIF version |
Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
8nn | ⊢ 8 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 12362 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7nn 12385 | . . 3 ⊢ 7 ∈ ℕ | |
3 | peano2nn 12305 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ 8 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 1c1 11185 + caddc 11187 ℕcn 12293 7c7 12353 8c8 12354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-1cn 11242 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 |
This theorem is referenced by: 9nn 12391 8nn0 12576 37prm 17168 43prm 17169 83prm 17170 317prm 17173 1259lem4 17181 1259lem5 17182 2503prm 17187 4001prm 17192 ipndx 17389 ipid 17390 ipsstr 17395 phlstr 17405 tngipOLD 24688 quart1cl 26915 quart1lem 26916 quart1 26917 log2tlbnd 27006 bposlem8 27353 lgsdir2lem2 27388 lgsdir2lem3 27389 2lgslem3a1 27462 2lgslem3b1 27463 2lgslem3c1 27464 2lgslem3d1 27465 2lgslem4 27468 2lgsoddprmlem2 27471 pntlemr 27664 pntlemj 27665 edgfid 29023 edgfndx 29024 edgfndxnn 29025 edgfndxidOLD 29027 baseltedgfOLD 29029 ex-prmo 30491 hgt750lem 34628 hgt750lem2 34629 420gcd8e4 41963 420lcm8e840 41968 lcm8un 41977 lcmineqlem23 42008 lcmineqlem 42009 3lexlogpow5ineq2 42012 3lexlogpow2ineq1 42015 rmydioph 42971 fmtnoprmfac2lem1 47440 127prm 47473 mod42tp1mod8 47476 8even 47587 8exp8mod9 47610 9fppr8 47611 nfermltl8rev 47616 nfermltlrev 47618 nnsum4primesevenALTV 47675 wtgoldbnnsum4prm 47676 bgoldbnnsum3prm 47678 bgoldbtbndlem1 47679 tgblthelfgott 47689 tgoldbachlt 47690 |
Copyright terms: Public domain | W3C validator |