![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8nn | Structured version Visualization version GIF version |
Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
8nn | ⊢ 8 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 12305 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7nn 12328 | . . 3 ⊢ 7 ∈ ℕ | |
3 | peano2nn 12248 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2825 | 1 ⊢ 8 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 (class class class)co 7414 1c1 11133 + caddc 11135 ℕcn 12236 7c7 12296 8c8 12297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 ax-1cn 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 |
This theorem is referenced by: 9nn 12334 8nn0 12519 37prm 17083 43prm 17084 83prm 17085 317prm 17088 1259lem4 17096 1259lem5 17097 2503prm 17102 4001prm 17107 ipndx 17304 ipid 17305 ipsstr 17310 phlstr 17320 tngipOLD 24556 quart1cl 26779 quart1lem 26780 quart1 26781 log2tlbnd 26870 bposlem8 27217 lgsdir2lem2 27252 lgsdir2lem3 27253 2lgslem3a1 27326 2lgslem3b1 27327 2lgslem3c1 27328 2lgslem3d1 27329 2lgslem4 27332 2lgsoddprmlem2 27335 pntlemr 27528 pntlemj 27529 edgfid 28794 edgfndx 28795 edgfndxnn 28796 edgfndxidOLD 28798 baseltedgfOLD 28800 ex-prmo 30262 hgt750lem 34277 hgt750lem2 34278 420gcd8e4 41471 420lcm8e840 41476 lcm8un 41485 lcmineqlem23 41516 lcmineqlem 41517 3lexlogpow5ineq2 41520 3lexlogpow2ineq1 41523 rmydioph 42429 fmtnoprmfac2lem1 46900 127prm 46933 mod42tp1mod8 46936 8even 47047 8exp8mod9 47070 9fppr8 47071 nfermltl8rev 47076 nfermltlrev 47078 nnsum4primesevenALTV 47135 wtgoldbnnsum4prm 47136 bgoldbnnsum3prm 47138 bgoldbtbndlem1 47139 tgblthelfgott 47149 tgoldbachlt 47150 |
Copyright terms: Public domain | W3C validator |