| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8nn | Structured version Visualization version GIF version | ||
| Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 8nn | ⊢ 8 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12205 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7nn 12228 | . . 3 ⊢ 7 ∈ ℕ | |
| 3 | peano2nn 12148 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2829 | 1 ⊢ 8 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 (class class class)co 7355 1c1 11018 + caddc 11020 ℕcn 12136 7c7 12196 8c8 12197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 ax-1cn 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 |
| This theorem is referenced by: 9nn 12234 8nn0 12415 37prm 17039 43prm 17040 83prm 17041 317prm 17044 1259lem4 17052 1259lem5 17053 2503prm 17058 4001prm 17063 ipndx 17241 ipid 17242 ipsstr 17247 phlstr 17257 quart1cl 26811 quart1lem 26812 quart1 26813 log2tlbnd 26902 bposlem8 27249 lgsdir2lem2 27284 lgsdir2lem3 27285 2lgslem3a1 27358 2lgslem3b1 27359 2lgslem3c1 27360 2lgslem3d1 27361 2lgslem4 27364 2lgsoddprmlem2 27367 pntlemr 27560 pntlemj 27561 edgfid 28989 edgfndx 28990 edgfndxnn 28991 ex-prmo 30460 hgt750lem 34736 hgt750lem2 34737 420gcd8e4 42172 420lcm8e840 42177 lcm8un 42186 lcmineqlem23 42217 lcmineqlem 42218 3lexlogpow5ineq2 42221 3lexlogpow2ineq1 42224 8ne0 42433 rmydioph 43171 fmtnoprmfac2lem1 47728 127prm 47761 mod42tp1mod8 47764 8even 47875 8exp8mod9 47898 9fppr8 47899 nfermltl8rev 47904 nfermltlrev 47906 nnsum4primesevenALTV 47963 wtgoldbnnsum4prm 47964 bgoldbnnsum3prm 47966 bgoldbtbndlem1 47967 tgblthelfgott 47977 tgoldbachlt 47978 |
| Copyright terms: Public domain | W3C validator |