| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8nn | Structured version Visualization version GIF version | ||
| Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 8nn | ⊢ 8 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12262 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7nn 12285 | . . 3 ⊢ 7 ∈ ℕ | |
| 3 | peano2nn 12205 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 8 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 1c1 11076 + caddc 11078 ℕcn 12193 7c7 12253 8c8 12254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-1cn 11133 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 |
| This theorem is referenced by: 9nn 12291 8nn0 12472 37prm 17098 43prm 17099 83prm 17100 317prm 17103 1259lem4 17111 1259lem5 17112 2503prm 17117 4001prm 17122 ipndx 17300 ipid 17301 ipsstr 17306 phlstr 17316 quart1cl 26771 quart1lem 26772 quart1 26773 log2tlbnd 26862 bposlem8 27209 lgsdir2lem2 27244 lgsdir2lem3 27245 2lgslem3a1 27318 2lgslem3b1 27319 2lgslem3c1 27320 2lgslem3d1 27321 2lgslem4 27324 2lgsoddprmlem2 27327 pntlemr 27520 pntlemj 27521 edgfid 28924 edgfndx 28925 edgfndxnn 28926 ex-prmo 30395 hgt750lem 34649 hgt750lem2 34650 420gcd8e4 42001 420lcm8e840 42006 lcm8un 42015 lcmineqlem23 42046 lcmineqlem 42047 3lexlogpow5ineq2 42050 3lexlogpow2ineq1 42053 8ne0 42258 rmydioph 43010 fmtnoprmfac2lem1 47571 127prm 47604 mod42tp1mod8 47607 8even 47718 8exp8mod9 47741 9fppr8 47742 nfermltl8rev 47747 nfermltlrev 47749 nnsum4primesevenALTV 47806 wtgoldbnnsum4prm 47807 bgoldbnnsum3prm 47809 bgoldbtbndlem1 47810 tgblthelfgott 47820 tgoldbachlt 47821 |
| Copyright terms: Public domain | W3C validator |