Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 8nn | Structured version Visualization version GIF version |
Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
8nn | ⊢ 8 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 12042 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7nn 12065 | . . 3 ⊢ 7 ∈ ℕ | |
3 | peano2nn 11985 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 8 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 1c1 10872 + caddc 10874 ℕcn 11973 7c7 12033 8c8 12034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-1cn 10929 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 |
This theorem is referenced by: 9nn 12071 8nn0 12256 37prm 16822 43prm 16823 83prm 16824 317prm 16827 1259lem4 16835 1259lem5 16836 2503prm 16841 4001prm 16846 ipndx 17040 ipid 17041 ipsstr 17046 phlstr 17056 tngipOLD 23810 quart1cl 26004 quart1lem 26005 quart1 26006 log2tlbnd 26095 bposlem8 26439 lgsdir2lem2 26474 lgsdir2lem3 26475 2lgslem3a1 26548 2lgslem3b1 26549 2lgslem3c1 26550 2lgslem3d1 26551 2lgslem4 26554 2lgsoddprmlem2 26557 pntlemr 26750 pntlemj 26751 edgfid 27358 edgfndx 27359 edgfndxnn 27360 edgfndxidOLD 27362 baseltedgfOLD 27364 ex-prmo 28823 hgt750lem 32631 hgt750lem2 32632 420gcd8e4 40014 420lcm8e840 40019 lcm8un 40028 lcmineqlem23 40059 lcmineqlem 40060 3lexlogpow5ineq2 40063 3lexlogpow2ineq1 40066 rmydioph 40836 fmtnoprmfac2lem1 45018 127prm 45051 mod42tp1mod8 45054 8even 45165 8exp8mod9 45188 9fppr8 45189 nfermltl8rev 45194 nfermltlrev 45196 nnsum4primesevenALTV 45253 wtgoldbnnsum4prm 45254 bgoldbnnsum3prm 45256 bgoldbtbndlem1 45257 tgblthelfgott 45267 tgoldbachlt 45268 |
Copyright terms: Public domain | W3C validator |