| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8nn | Structured version Visualization version GIF version | ||
| Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 8nn | ⊢ 8 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12255 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7nn 12278 | . . 3 ⊢ 7 ∈ ℕ | |
| 3 | peano2nn 12198 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 8 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 1c1 11069 + caddc 11071 ℕcn 12186 7c7 12246 8c8 12247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 |
| This theorem is referenced by: 9nn 12284 8nn0 12465 37prm 17091 43prm 17092 83prm 17093 317prm 17096 1259lem4 17104 1259lem5 17105 2503prm 17110 4001prm 17115 ipndx 17293 ipid 17294 ipsstr 17299 phlstr 17309 quart1cl 26764 quart1lem 26765 quart1 26766 log2tlbnd 26855 bposlem8 27202 lgsdir2lem2 27237 lgsdir2lem3 27238 2lgslem3a1 27311 2lgslem3b1 27312 2lgslem3c1 27313 2lgslem3d1 27314 2lgslem4 27317 2lgsoddprmlem2 27320 pntlemr 27513 pntlemj 27514 edgfid 28917 edgfndx 28918 edgfndxnn 28919 ex-prmo 30388 hgt750lem 34642 hgt750lem2 34643 420gcd8e4 41994 420lcm8e840 41999 lcm8un 42008 lcmineqlem23 42039 lcmineqlem 42040 3lexlogpow5ineq2 42043 3lexlogpow2ineq1 42046 8ne0 42251 rmydioph 43003 fmtnoprmfac2lem1 47567 127prm 47600 mod42tp1mod8 47603 8even 47714 8exp8mod9 47737 9fppr8 47738 nfermltl8rev 47743 nfermltlrev 47745 nnsum4primesevenALTV 47802 wtgoldbnnsum4prm 47803 bgoldbnnsum3prm 47805 bgoldbtbndlem1 47806 tgblthelfgott 47816 tgoldbachlt 47817 |
| Copyright terms: Public domain | W3C validator |