| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8nn | Structured version Visualization version GIF version | ||
| Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 8nn | ⊢ 8 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12231 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7nn 12254 | . . 3 ⊢ 7 ∈ ℕ | |
| 3 | peano2nn 12174 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 8 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 1c1 11045 + caddc 11047 ℕcn 12162 7c7 12222 8c8 12223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-1cn 11102 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 |
| This theorem is referenced by: 9nn 12260 8nn0 12441 37prm 17067 43prm 17068 83prm 17069 317prm 17072 1259lem4 17080 1259lem5 17081 2503prm 17086 4001prm 17091 ipndx 17269 ipid 17270 ipsstr 17275 phlstr 17285 quart1cl 26740 quart1lem 26741 quart1 26742 log2tlbnd 26831 bposlem8 27178 lgsdir2lem2 27213 lgsdir2lem3 27214 2lgslem3a1 27287 2lgslem3b1 27288 2lgslem3c1 27289 2lgslem3d1 27290 2lgslem4 27293 2lgsoddprmlem2 27296 pntlemr 27489 pntlemj 27490 edgfid 28893 edgfndx 28894 edgfndxnn 28895 ex-prmo 30361 hgt750lem 34615 hgt750lem2 34616 420gcd8e4 41967 420lcm8e840 41972 lcm8un 41981 lcmineqlem23 42012 lcmineqlem 42013 3lexlogpow5ineq2 42016 3lexlogpow2ineq1 42019 8ne0 42224 rmydioph 42976 fmtnoprmfac2lem1 47540 127prm 47573 mod42tp1mod8 47576 8even 47687 8exp8mod9 47710 9fppr8 47711 nfermltl8rev 47716 nfermltlrev 47718 nnsum4primesevenALTV 47775 wtgoldbnnsum4prm 47776 bgoldbnnsum3prm 47778 bgoldbtbndlem1 47779 tgblthelfgott 47789 tgoldbachlt 47790 |
| Copyright terms: Public domain | W3C validator |