| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8nn | Structured version Visualization version GIF version | ||
| Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 8nn | ⊢ 8 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12216 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7nn 12239 | . . 3 ⊢ 7 ∈ ℕ | |
| 3 | peano2nn 12159 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 8 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7353 1c1 11029 + caddc 11031 ℕcn 12147 7c7 12207 8c8 12208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-1cn 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 |
| This theorem is referenced by: 9nn 12245 8nn0 12426 37prm 17051 43prm 17052 83prm 17053 317prm 17056 1259lem4 17064 1259lem5 17065 2503prm 17070 4001prm 17075 ipndx 17253 ipid 17254 ipsstr 17259 phlstr 17269 quart1cl 26781 quart1lem 26782 quart1 26783 log2tlbnd 26872 bposlem8 27219 lgsdir2lem2 27254 lgsdir2lem3 27255 2lgslem3a1 27328 2lgslem3b1 27329 2lgslem3c1 27330 2lgslem3d1 27331 2lgslem4 27334 2lgsoddprmlem2 27337 pntlemr 27530 pntlemj 27531 edgfid 28954 edgfndx 28955 edgfndxnn 28956 ex-prmo 30422 hgt750lem 34638 hgt750lem2 34639 420gcd8e4 41999 420lcm8e840 42004 lcm8un 42013 lcmineqlem23 42044 lcmineqlem 42045 3lexlogpow5ineq2 42048 3lexlogpow2ineq1 42051 8ne0 42256 rmydioph 43007 fmtnoprmfac2lem1 47570 127prm 47603 mod42tp1mod8 47606 8even 47717 8exp8mod9 47740 9fppr8 47741 nfermltl8rev 47746 nfermltlrev 47748 nnsum4primesevenALTV 47805 wtgoldbnnsum4prm 47806 bgoldbnnsum3prm 47808 bgoldbtbndlem1 47809 tgblthelfgott 47819 tgoldbachlt 47820 |
| Copyright terms: Public domain | W3C validator |