![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8nn | Structured version Visualization version GIF version |
Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
8nn | ⊢ 8 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 11382 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7nn 11409 | . . 3 ⊢ 7 ∈ ℕ | |
3 | peano2nn 11326 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2874 | 1 ⊢ 8 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2157 (class class class)co 6878 1c1 10225 + caddc 10227 ℕcn 11312 7c7 11373 8c8 11374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-1cn 10282 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 |
This theorem is referenced by: 9nn 11417 8nn0 11605 37prm 16155 43prm 16156 83prm 16157 317prm 16160 1259lem4 16168 1259lem5 16169 2503prm 16174 4001prm 16179 ipndx 16343 ipid 16344 ipsstr 16345 ressip 16354 phlstr 16355 tngip 22779 quart1cl 24933 quart1lem 24934 quart1 24935 log2tlbnd 25024 bposlem8 25368 lgsdir2lem2 25403 lgsdir2lem3 25404 2lgslem3a1 25477 2lgslem3b1 25478 2lgslem3c1 25479 2lgslem3d1 25480 2lgslem4 25483 2lgsoddprmlem2 25486 pntlemr 25643 pntlemj 25644 edgfid 26226 edgfndxnn 26227 edgfndxid 26228 baseltedgf 26229 ex-prmo 27844 hgt750lem 31249 hgt750lem2 31250 rmydioph 38362 fmtnoprmfac2lem1 42256 127prm 42293 mod42tp1mod8 42297 8even 42400 nnsum4primesevenALTV 42467 wtgoldbnnsum4prm 42468 bgoldbnnsum3prm 42470 bgoldbtbndlem1 42471 tgblthelfgott 42481 tgoldbachlt 42482 |
Copyright terms: Public domain | W3C validator |