| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8nn | Structured version Visualization version GIF version | ||
| Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 8nn | ⊢ 8 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12307 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7nn 12330 | . . 3 ⊢ 7 ∈ ℕ | |
| 3 | peano2nn 12250 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2830 | 1 ⊢ 8 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7403 1c1 11128 + caddc 11130 ℕcn 12238 7c7 12298 8c8 12299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 ax-1cn 11185 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 |
| This theorem is referenced by: 9nn 12336 8nn0 12522 37prm 17138 43prm 17139 83prm 17140 317prm 17143 1259lem4 17151 1259lem5 17152 2503prm 17157 4001prm 17162 ipndx 17342 ipid 17343 ipsstr 17348 phlstr 17358 quart1cl 26814 quart1lem 26815 quart1 26816 log2tlbnd 26905 bposlem8 27252 lgsdir2lem2 27287 lgsdir2lem3 27288 2lgslem3a1 27361 2lgslem3b1 27362 2lgslem3c1 27363 2lgslem3d1 27364 2lgslem4 27367 2lgsoddprmlem2 27370 pntlemr 27563 pntlemj 27564 edgfid 28915 edgfndx 28916 edgfndxnn 28917 ex-prmo 30386 hgt750lem 34629 hgt750lem2 34630 420gcd8e4 41965 420lcm8e840 41970 lcm8un 41979 lcmineqlem23 42010 lcmineqlem 42011 3lexlogpow5ineq2 42014 3lexlogpow2ineq1 42017 8ne0 42260 rmydioph 42985 fmtnoprmfac2lem1 47528 127prm 47561 mod42tp1mod8 47564 8even 47675 8exp8mod9 47698 9fppr8 47699 nfermltl8rev 47704 nfermltlrev 47706 nnsum4primesevenALTV 47763 wtgoldbnnsum4prm 47764 bgoldbnnsum3prm 47766 bgoldbtbndlem1 47767 tgblthelfgott 47777 tgoldbachlt 47778 |
| Copyright terms: Public domain | W3C validator |