Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4p4e8 | Structured version Visualization version GIF version |
Description: 4 + 4 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
4p4e8 | ⊢ (4 + 4) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 11943 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | oveq2i 7263 | . . 3 ⊢ (4 + 4) = (4 + (3 + 1)) |
3 | 4cn 11963 | . . . 4 ⊢ 4 ∈ ℂ | |
4 | 3cn 11959 | . . . 4 ⊢ 3 ∈ ℂ | |
5 | ax-1cn 10835 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 10891 | . . 3 ⊢ ((4 + 3) + 1) = (4 + (3 + 1)) |
7 | 2, 6 | eqtr4i 2770 | . 2 ⊢ (4 + 4) = ((4 + 3) + 1) |
8 | df-8 11947 | . . 3 ⊢ 8 = (7 + 1) | |
9 | 4p3e7 12032 | . . . 4 ⊢ (4 + 3) = 7 | |
10 | 9 | oveq1i 7262 | . . 3 ⊢ ((4 + 3) + 1) = (7 + 1) |
11 | 8, 10 | eqtr4i 2770 | . 2 ⊢ 8 = ((4 + 3) + 1) |
12 | 7, 11 | eqtr4i 2770 | 1 ⊢ (4 + 4) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 (class class class)co 7252 1c1 10778 + caddc 10780 3c3 11934 4c4 11935 7c7 11938 8c8 11939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-1cn 10835 ax-addcl 10837 ax-addass 10842 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6373 df-fv 6423 df-ov 7255 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 |
This theorem is referenced by: 4t2e8 12046 83prm 16727 1259lem2 16736 1259lem3 16737 2503lem2 16742 4001lem2 16746 quart1lem 25885 log2ub 25979 hgt750lem2 32507 3exp7 39968 3lexlogpow5ineq1 39969 3cubeslem3r 40397 |
Copyright terms: Public domain | W3C validator |