![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4p4e8 | Structured version Visualization version GIF version |
Description: 4 + 4 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
4p4e8 | ⊢ (4 + 4) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 12328 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | oveq2i 7441 | . . 3 ⊢ (4 + 4) = (4 + (3 + 1)) |
3 | 4cn 12348 | . . . 4 ⊢ 4 ∈ ℂ | |
4 | 3cn 12344 | . . . 4 ⊢ 3 ∈ ℂ | |
5 | ax-1cn 11210 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 11268 | . . 3 ⊢ ((4 + 3) + 1) = (4 + (3 + 1)) |
7 | 2, 6 | eqtr4i 2765 | . 2 ⊢ (4 + 4) = ((4 + 3) + 1) |
8 | df-8 12332 | . . 3 ⊢ 8 = (7 + 1) | |
9 | 4p3e7 12417 | . . . 4 ⊢ (4 + 3) = 7 | |
10 | 9 | oveq1i 7440 | . . 3 ⊢ ((4 + 3) + 1) = (7 + 1) |
11 | 8, 10 | eqtr4i 2765 | . 2 ⊢ 8 = ((4 + 3) + 1) |
12 | 7, 11 | eqtr4i 2765 | 1 ⊢ (4 + 4) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 (class class class)co 7430 1c1 11153 + caddc 11155 3c3 12319 4c4 12320 7c7 12323 8c8 12324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-1cn 11210 ax-addcl 11212 ax-addass 11217 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 |
This theorem is referenced by: 4t2e8 12431 83prm 17156 1259lem2 17165 1259lem3 17166 2503lem2 17171 4001lem2 17175 quart1lem 26912 log2ub 27006 hgt750lem2 34645 3exp7 42034 3lexlogpow5ineq1 42035 3cubeslem3r 42674 |
Copyright terms: Public domain | W3C validator |