Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4p4e8 | Structured version Visualization version GIF version |
Description: 4 + 4 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
4p4e8 | ⊢ (4 + 4) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 11784 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | oveq2i 7184 | . . 3 ⊢ (4 + 4) = (4 + (3 + 1)) |
3 | 4cn 11804 | . . . 4 ⊢ 4 ∈ ℂ | |
4 | 3cn 11800 | . . . 4 ⊢ 3 ∈ ℂ | |
5 | ax-1cn 10676 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 10732 | . . 3 ⊢ ((4 + 3) + 1) = (4 + (3 + 1)) |
7 | 2, 6 | eqtr4i 2765 | . 2 ⊢ (4 + 4) = ((4 + 3) + 1) |
8 | df-8 11788 | . . 3 ⊢ 8 = (7 + 1) | |
9 | 4p3e7 11873 | . . . 4 ⊢ (4 + 3) = 7 | |
10 | 9 | oveq1i 7183 | . . 3 ⊢ ((4 + 3) + 1) = (7 + 1) |
11 | 8, 10 | eqtr4i 2765 | . 2 ⊢ 8 = ((4 + 3) + 1) |
12 | 7, 11 | eqtr4i 2765 | 1 ⊢ (4 + 4) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 (class class class)co 7173 1c1 10619 + caddc 10621 3c3 11775 4c4 11776 7c7 11779 8c8 11780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 ax-1cn 10676 ax-addcl 10678 ax-addass 10683 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-v 3401 df-un 3849 df-in 3851 df-ss 3861 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-iota 6298 df-fv 6348 df-ov 7176 df-2 11782 df-3 11783 df-4 11784 df-5 11785 df-6 11786 df-7 11787 df-8 11788 |
This theorem is referenced by: 4t2e8 11887 83prm 16562 1259lem2 16571 1259lem3 16572 2503lem2 16577 4001lem2 16581 quart1lem 25596 log2ub 25690 hgt750lem2 32205 3exp7 39704 3lexlogpow5ineq1 39705 3cubeslem3r 40104 |
Copyright terms: Public domain | W3C validator |