| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4p4e8 | Structured version Visualization version GIF version | ||
| Description: 4 + 4 = 8. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 4p4e8 | ⊢ (4 + 4) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12227 | . . . 4 ⊢ 4 = (3 + 1) | |
| 2 | 1 | oveq2i 7380 | . . 3 ⊢ (4 + 4) = (4 + (3 + 1)) |
| 3 | 4cn 12247 | . . . 4 ⊢ 4 ∈ ℂ | |
| 4 | 3cn 12243 | . . . 4 ⊢ 3 ∈ ℂ | |
| 5 | ax-1cn 11102 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11160 | . . 3 ⊢ ((4 + 3) + 1) = (4 + (3 + 1)) |
| 7 | 2, 6 | eqtr4i 2755 | . 2 ⊢ (4 + 4) = ((4 + 3) + 1) |
| 8 | df-8 12231 | . . 3 ⊢ 8 = (7 + 1) | |
| 9 | 4p3e7 12311 | . . . 4 ⊢ (4 + 3) = 7 | |
| 10 | 9 | oveq1i 7379 | . . 3 ⊢ ((4 + 3) + 1) = (7 + 1) |
| 11 | 8, 10 | eqtr4i 2755 | . 2 ⊢ 8 = ((4 + 3) + 1) |
| 12 | 7, 11 | eqtr4i 2755 | 1 ⊢ (4 + 4) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 + caddc 11047 3c3 12218 4c4 12219 7c7 12222 8c8 12223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-addcl 11104 ax-addass 11109 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 |
| This theorem is referenced by: 4t2e8 12325 83prm 17069 1259lem2 17078 1259lem3 17079 2503lem2 17084 4001lem2 17088 quart1lem 26798 log2ub 26892 hgt750lem2 34636 3exp7 42034 3lexlogpow5ineq1 42035 3cubeslem3r 42668 |
| Copyright terms: Public domain | W3C validator |