| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7p2e9 | Structured version Visualization version GIF version | ||
| Description: 7 + 2 = 9. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 7p2e9 | ⊢ (7 + 2) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12295 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7410 | . . . 4 ⊢ (7 + 2) = (7 + (1 + 1)) |
| 3 | 7cn 12326 | . . . . 5 ⊢ 7 ∈ ℂ | |
| 4 | ax-1cn 11179 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11237 | . . . 4 ⊢ ((7 + 1) + 1) = (7 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2760 | . . 3 ⊢ (7 + 2) = ((7 + 1) + 1) |
| 7 | df-8 12301 | . . . 4 ⊢ 8 = (7 + 1) | |
| 8 | 7 | oveq1i 7409 | . . 3 ⊢ (8 + 1) = ((7 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2760 | . 2 ⊢ (7 + 2) = (8 + 1) |
| 10 | df-9 12302 | . 2 ⊢ 9 = (8 + 1) | |
| 11 | 9, 10 | eqtr4i 2760 | 1 ⊢ (7 + 2) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 (class class class)co 7399 1c1 11122 + caddc 11124 2c2 12287 7c7 12292 8c8 12293 9c9 12294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-1cn 11179 ax-addcl 11181 ax-addass 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-iota 6480 df-fv 6535 df-ov 7402 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 |
| This theorem is referenced by: 7p3e10 12775 7t7e49 12814 cos2bnd 16191 prmlem2 17124 139prm 17128 1259lem2 17136 1259lem3 17137 1259lem4 17138 1259lem5 17139 2503lem2 17142 4001lem4 17148 hgt750lem2 34605 aks4d1p1p7 42009 fmtno5lem4 47488 fmtno5fac 47514 139prmALT 47528 |
| Copyright terms: Public domain | W3C validator |