MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  7p2e9 Structured version   Visualization version   GIF version

Theorem 7p2e9 12342
Description: 7 + 2 = 9. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
7p2e9 (7 + 2) = 9

Proof of Theorem 7p2e9
StepHypRef Expression
1 df-2 12249 . . . . 5 2 = (1 + 1)
21oveq2i 7398 . . . 4 (7 + 2) = (7 + (1 + 1))
3 7cn 12280 . . . . 5 7 ∈ ℂ
4 ax-1cn 11126 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 11184 . . . 4 ((7 + 1) + 1) = (7 + (1 + 1))
62, 5eqtr4i 2755 . . 3 (7 + 2) = ((7 + 1) + 1)
7 df-8 12255 . . . 4 8 = (7 + 1)
87oveq1i 7397 . . 3 (8 + 1) = ((7 + 1) + 1)
96, 8eqtr4i 2755 . 2 (7 + 2) = (8 + 1)
10 df-9 12256 . 2 9 = (8 + 1)
119, 10eqtr4i 2755 1 (7 + 2) = 9
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7387  1c1 11069   + caddc 11071  2c2 12241  7c7 12246  8c8 12247  9c9 12248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-1cn 11126  ax-addcl 11128  ax-addass 11133
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256
This theorem is referenced by:  7p3e10  12724  7t7e49  12763  cos2bnd  16156  prmlem2  17090  139prm  17094  1259lem2  17102  1259lem3  17103  1259lem4  17104  1259lem5  17105  2503lem2  17108  4001lem4  17114  hgt750lem2  34643  aks4d1p1p7  42062  fmtno5lem4  47557  fmtno5fac  47583  139prmALT  47597
  Copyright terms: Public domain W3C validator