MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  7p2e9 Structured version   Visualization version   GIF version

Theorem 7p2e9 12454
Description: 7 + 2 = 9. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
7p2e9 (7 + 2) = 9

Proof of Theorem 7p2e9
StepHypRef Expression
1 df-2 12356 . . . . 5 2 = (1 + 1)
21oveq2i 7459 . . . 4 (7 + 2) = (7 + (1 + 1))
3 7cn 12387 . . . . 5 7 ∈ ℂ
4 ax-1cn 11242 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 11300 . . . 4 ((7 + 1) + 1) = (7 + (1 + 1))
62, 5eqtr4i 2771 . . 3 (7 + 2) = ((7 + 1) + 1)
7 df-8 12362 . . . 4 8 = (7 + 1)
87oveq1i 7458 . . 3 (8 + 1) = ((7 + 1) + 1)
96, 8eqtr4i 2771 . 2 (7 + 2) = (8 + 1)
10 df-9 12363 . 2 9 = (8 + 1)
119, 10eqtr4i 2771 1 (7 + 2) = 9
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  (class class class)co 7448  1c1 11185   + caddc 11187  2c2 12348  7c7 12353  8c8 12354  9c9 12355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-1cn 11242  ax-addcl 11244  ax-addass 11249
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363
This theorem is referenced by:  7p3e10  12833  7t7e49  12872  cos2bnd  16236  prmlem2  17167  139prm  17171  1259lem2  17179  1259lem3  17180  1259lem4  17181  1259lem5  17182  2503lem2  17185  4001lem4  17191  hgt750lem2  34629  aks4d1p1p7  42031  fmtno5lem4  47430  fmtno5fac  47456  139prmALT  47470
  Copyright terms: Public domain W3C validator