MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  7p2e9 Structured version   Visualization version   GIF version

Theorem 7p2e9 12401
Description: 7 + 2 = 9. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
7p2e9 (7 + 2) = 9

Proof of Theorem 7p2e9
StepHypRef Expression
1 df-2 12303 . . . . 5 2 = (1 + 1)
21oveq2i 7416 . . . 4 (7 + 2) = (7 + (1 + 1))
3 7cn 12334 . . . . 5 7 ∈ ℂ
4 ax-1cn 11187 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 11245 . . . 4 ((7 + 1) + 1) = (7 + (1 + 1))
62, 5eqtr4i 2761 . . 3 (7 + 2) = ((7 + 1) + 1)
7 df-8 12309 . . . 4 8 = (7 + 1)
87oveq1i 7415 . . 3 (8 + 1) = ((7 + 1) + 1)
96, 8eqtr4i 2761 . 2 (7 + 2) = (8 + 1)
10 df-9 12310 . 2 9 = (8 + 1)
119, 10eqtr4i 2761 1 (7 + 2) = 9
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7405  1c1 11130   + caddc 11132  2c2 12295  7c7 12300  8c8 12301  9c9 12302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-1cn 11187  ax-addcl 11189  ax-addass 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310
This theorem is referenced by:  7p3e10  12783  7t7e49  12822  cos2bnd  16206  prmlem2  17139  139prm  17143  1259lem2  17151  1259lem3  17152  1259lem4  17153  1259lem5  17154  2503lem2  17157  4001lem4  17163  hgt750lem2  34684  aks4d1p1p7  42087  fmtno5lem4  47570  fmtno5fac  47596  139prmALT  47610
  Copyright terms: Public domain W3C validator