Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 7p2e9 | Structured version Visualization version GIF version |
Description: 7 + 2 = 9. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
7p2e9 | ⊢ (7 + 2) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 11966 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7266 | . . . 4 ⊢ (7 + 2) = (7 + (1 + 1)) |
3 | 7cn 11997 | . . . . 5 ⊢ 7 ∈ ℂ | |
4 | ax-1cn 10860 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 10916 | . . . 4 ⊢ ((7 + 1) + 1) = (7 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2769 | . . 3 ⊢ (7 + 2) = ((7 + 1) + 1) |
7 | df-8 11972 | . . . 4 ⊢ 8 = (7 + 1) | |
8 | 7 | oveq1i 7265 | . . 3 ⊢ (8 + 1) = ((7 + 1) + 1) |
9 | 6, 8 | eqtr4i 2769 | . 2 ⊢ (7 + 2) = (8 + 1) |
10 | df-9 11973 | . 2 ⊢ 9 = (8 + 1) | |
11 | 9, 10 | eqtr4i 2769 | 1 ⊢ (7 + 2) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 1c1 10803 + caddc 10805 2c2 11958 7c7 11963 8c8 11964 9c9 11965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-addcl 10862 ax-addass 10867 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 |
This theorem is referenced by: 7p3e10 12441 7t7e49 12480 cos2bnd 15825 prmlem2 16749 139prm 16753 1259lem2 16761 1259lem3 16762 1259lem4 16763 1259lem5 16764 2503lem2 16767 4001lem4 16773 hgt750lem2 32532 aks4d1p1p7 40010 fmtno5lem4 44896 fmtno5fac 44922 139prmALT 44936 |
Copyright terms: Public domain | W3C validator |