![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 7p2e9 | Structured version Visualization version GIF version |
Description: 7 + 2 = 9. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
7p2e9 | ⊢ (7 + 2) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12327 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7442 | . . . 4 ⊢ (7 + 2) = (7 + (1 + 1)) |
3 | 7cn 12358 | . . . . 5 ⊢ 7 ∈ ℂ | |
4 | ax-1cn 11211 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 11269 | . . . 4 ⊢ ((7 + 1) + 1) = (7 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2766 | . . 3 ⊢ (7 + 2) = ((7 + 1) + 1) |
7 | df-8 12333 | . . . 4 ⊢ 8 = (7 + 1) | |
8 | 7 | oveq1i 7441 | . . 3 ⊢ (8 + 1) = ((7 + 1) + 1) |
9 | 6, 8 | eqtr4i 2766 | . 2 ⊢ (7 + 2) = (8 + 1) |
10 | df-9 12334 | . 2 ⊢ 9 = (8 + 1) | |
11 | 9, 10 | eqtr4i 2766 | 1 ⊢ (7 + 2) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7431 1c1 11154 + caddc 11156 2c2 12319 7c7 12324 8c8 12325 9c9 12326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-1cn 11211 ax-addcl 11213 ax-addass 11218 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 |
This theorem is referenced by: 7p3e10 12806 7t7e49 12845 cos2bnd 16221 prmlem2 17154 139prm 17158 1259lem2 17166 1259lem3 17167 1259lem4 17168 1259lem5 17169 2503lem2 17172 4001lem4 17178 hgt750lem2 34646 aks4d1p1p7 42056 fmtno5lem4 47481 fmtno5fac 47507 139prmALT 47521 |
Copyright terms: Public domain | W3C validator |