MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  7p2e9 Structured version   Visualization version   GIF version

Theorem 7p2e9 12281
Description: 7 + 2 = 9. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
7p2e9 (7 + 2) = 9

Proof of Theorem 7p2e9
StepHypRef Expression
1 df-2 12188 . . . . 5 2 = (1 + 1)
21oveq2i 7357 . . . 4 (7 + 2) = (7 + (1 + 1))
3 7cn 12219 . . . . 5 7 ∈ ℂ
4 ax-1cn 11064 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 11122 . . . 4 ((7 + 1) + 1) = (7 + (1 + 1))
62, 5eqtr4i 2757 . . 3 (7 + 2) = ((7 + 1) + 1)
7 df-8 12194 . . . 4 8 = (7 + 1)
87oveq1i 7356 . . 3 (8 + 1) = ((7 + 1) + 1)
96, 8eqtr4i 2757 . 2 (7 + 2) = (8 + 1)
10 df-9 12195 . 2 9 = (8 + 1)
119, 10eqtr4i 2757 1 (7 + 2) = 9
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7346  1c1 11007   + caddc 11009  2c2 12180  7c7 12185  8c8 12186  9c9 12187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-1cn 11064  ax-addcl 11066  ax-addass 11071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195
This theorem is referenced by:  7p3e10  12663  7t7e49  12702  cos2bnd  16097  prmlem2  17031  139prm  17035  1259lem2  17043  1259lem3  17044  1259lem4  17045  1259lem5  17046  2503lem2  17049  4001lem4  17055  hgt750lem2  34665  aks4d1p1p7  42177  fmtno5lem4  47666  fmtno5fac  47692  139prmALT  47706
  Copyright terms: Public domain W3C validator