MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  7p2e9 Structured version   Visualization version   GIF version

Theorem 7p2e9 12284
Description: 7 + 2 = 9. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
7p2e9 (7 + 2) = 9

Proof of Theorem 7p2e9
StepHypRef Expression
1 df-2 12191 . . . . 5 2 = (1 + 1)
21oveq2i 7360 . . . 4 (7 + 2) = (7 + (1 + 1))
3 7cn 12222 . . . . 5 7 ∈ ℂ
4 ax-1cn 11067 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 11125 . . . 4 ((7 + 1) + 1) = (7 + (1 + 1))
62, 5eqtr4i 2755 . . 3 (7 + 2) = ((7 + 1) + 1)
7 df-8 12197 . . . 4 8 = (7 + 1)
87oveq1i 7359 . . 3 (8 + 1) = ((7 + 1) + 1)
96, 8eqtr4i 2755 . 2 (7 + 2) = (8 + 1)
10 df-9 12198 . 2 9 = (8 + 1)
119, 10eqtr4i 2755 1 (7 + 2) = 9
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7349  1c1 11010   + caddc 11012  2c2 12183  7c7 12188  8c8 12189  9c9 12190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-1cn 11067  ax-addcl 11069  ax-addass 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-iota 6438  df-fv 6490  df-ov 7352  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198
This theorem is referenced by:  7p3e10  12666  7t7e49  12705  cos2bnd  16097  prmlem2  17031  139prm  17035  1259lem2  17043  1259lem3  17044  1259lem4  17045  1259lem5  17046  2503lem2  17049  4001lem4  17055  hgt750lem2  34620  aks4d1p1p7  42051  fmtno5lem4  47544  fmtno5fac  47570  139prmALT  47584
  Copyright terms: Public domain W3C validator