![]() |
Metamath
Proof Explorer Theorem List (p. 124 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30438) |
![]() (30439-31961) |
![]() (31962-47939) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 4cn 12301 | The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
⊢ 4 ∈ ℂ | ||
Theorem | 5nn 12302 | 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 5 ∈ ℕ | ||
Theorem | 5re 12303 | The number 5 is real. (Contributed by NM, 27-May-1999.) |
⊢ 5 ∈ ℝ | ||
Theorem | 5cn 12304 | The number 5 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
⊢ 5 ∈ ℂ | ||
Theorem | 6nn 12305 | 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 6 ∈ ℕ | ||
Theorem | 6re 12306 | The number 6 is real. (Contributed by NM, 27-May-1999.) |
⊢ 6 ∈ ℝ | ||
Theorem | 6cn 12307 | The number 6 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
⊢ 6 ∈ ℂ | ||
Theorem | 7nn 12308 | 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 7 ∈ ℕ | ||
Theorem | 7re 12309 | The number 7 is real. (Contributed by NM, 27-May-1999.) |
⊢ 7 ∈ ℝ | ||
Theorem | 7cn 12310 | The number 7 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
⊢ 7 ∈ ℂ | ||
Theorem | 8nn 12311 | 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 8 ∈ ℕ | ||
Theorem | 8re 12312 | The number 8 is real. (Contributed by NM, 27-May-1999.) |
⊢ 8 ∈ ℝ | ||
Theorem | 8cn 12313 | The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
⊢ 8 ∈ ℂ | ||
Theorem | 9nn 12314 | 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
⊢ 9 ∈ ℕ | ||
Theorem | 9re 12315 | The number 9 is real. (Contributed by NM, 27-May-1999.) |
⊢ 9 ∈ ℝ | ||
Theorem | 9cn 12316 | The number 9 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
⊢ 9 ∈ ℂ | ||
Theorem | 0le0 12317 | Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ 0 ≤ 0 | ||
Theorem | 0le2 12318 | The number 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
⊢ 0 ≤ 2 | ||
Theorem | 2pos 12319 | The number 2 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 2 | ||
Theorem | 2ne0 12320 | The number 2 is nonzero. (Contributed by NM, 9-Nov-2007.) |
⊢ 2 ≠ 0 | ||
Theorem | 3pos 12321 | The number 3 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 3 | ||
Theorem | 3ne0 12322 | The number 3 is nonzero. (Contributed by FL, 17-Oct-2010.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
⊢ 3 ≠ 0 | ||
Theorem | 4pos 12323 | The number 4 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 4 | ||
Theorem | 4ne0 12324 | The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.) |
⊢ 4 ≠ 0 | ||
Theorem | 5pos 12325 | The number 5 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 5 | ||
Theorem | 6pos 12326 | The number 6 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 6 | ||
Theorem | 7pos 12327 | The number 7 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 7 | ||
Theorem | 8pos 12328 | The number 8 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 8 | ||
Theorem | 9pos 12329 | The number 9 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 9 | ||
This section includes specific theorems about one-digit natural numbers (membership, addition, subtraction, multiplication, division, ordering). | ||
Theorem | neg1cn 12330 | -1 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ -1 ∈ ℂ | ||
Theorem | neg1rr 12331 | -1 is a real number. (Contributed by David A. Wheeler, 5-Dec-2018.) |
⊢ -1 ∈ ℝ | ||
Theorem | neg1ne0 12332 | -1 is nonzero. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -1 ≠ 0 | ||
Theorem | neg1lt0 12333 | -1 is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -1 < 0 | ||
Theorem | negneg1e1 12334 | --1 is 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ --1 = 1 | ||
Theorem | 1pneg1e0 12335 | 1 + -1 is 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (1 + -1) = 0 | ||
Theorem | 0m0e0 12336 | 0 minus 0 equals 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (0 − 0) = 0 | ||
Theorem | 1m0e1 12337 | 1 - 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (1 − 0) = 1 | ||
Theorem | 0p1e1 12338 | 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ (0 + 1) = 1 | ||
Theorem | fv0p1e1 12339 | Function value at 𝑁 + 1 with 𝑁 replaced by 0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.) |
⊢ (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1)) | ||
Theorem | 1p0e1 12340 | 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (1 + 0) = 1 | ||
Theorem | 1p1e2 12341 | 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.) |
⊢ (1 + 1) = 2 | ||
Theorem | 2m1e1 12342 | 2 - 1 = 1. The result is on the right-hand-side to be consistent with similar proofs like 4p4e8 12371. (Contributed by David A. Wheeler, 4-Jan-2017.) |
⊢ (2 − 1) = 1 | ||
Theorem | 1e2m1 12343 | 1 = 2 - 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 1 = (2 − 1) | ||
Theorem | 3m1e2 12344 | 3 - 1 = 2. (Contributed by FL, 17-Oct-2010.) (Revised by NM, 10-Dec-2017.) (Proof shortened by AV, 6-Sep-2021.) |
⊢ (3 − 1) = 2 | ||
Theorem | 4m1e3 12345 | 4 - 1 = 3. (Contributed by AV, 8-Feb-2021.) (Proof shortened by AV, 6-Sep-2021.) |
⊢ (4 − 1) = 3 | ||
Theorem | 5m1e4 12346 | 5 - 1 = 4. (Contributed by AV, 6-Sep-2021.) |
⊢ (5 − 1) = 4 | ||
Theorem | 6m1e5 12347 | 6 - 1 = 5. (Contributed by AV, 6-Sep-2021.) |
⊢ (6 − 1) = 5 | ||
Theorem | 7m1e6 12348 | 7 - 1 = 6. (Contributed by AV, 6-Sep-2021.) |
⊢ (7 − 1) = 6 | ||
Theorem | 8m1e7 12349 | 8 - 1 = 7. (Contributed by AV, 6-Sep-2021.) |
⊢ (8 − 1) = 7 | ||
Theorem | 9m1e8 12350 | 9 - 1 = 8. (Contributed by AV, 6-Sep-2021.) |
⊢ (9 − 1) = 8 | ||
Theorem | 2p2e4 12351 | Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: mmset.html#trivia. This proof is simple, but it depends on many other proof steps because 2 and 4 are complex numbers and thus it depends on our construction of complex numbers. The proof o2p2e4 8543 is similar but proves 2 + 2 = 4 using ordinal natural numbers (finite integers starting at 0), so that proof depends on fewer intermediate steps. (Contributed by NM, 27-May-1999.) |
⊢ (2 + 2) = 4 | ||
Theorem | 2times 12352 | Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.) |
⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | ||
Theorem | times2 12353 | A number times 2. (Contributed by NM, 16-Oct-2007.) |
⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) | ||
Theorem | 2timesi 12354 | Two times a number. (Contributed by NM, 1-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (2 · 𝐴) = (𝐴 + 𝐴) | ||
Theorem | times2i 12355 | A number times 2. (Contributed by NM, 11-May-2004.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · 2) = (𝐴 + 𝐴) | ||
Theorem | 2txmxeqx 12356 | Two times a complex number minus the number itself results in the number itself. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
⊢ (𝑋 ∈ ℂ → ((2 · 𝑋) − 𝑋) = 𝑋) | ||
Theorem | 2div2e1 12357 | 2 divided by 2 is 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (2 / 2) = 1 | ||
Theorem | 2p1e3 12358 | 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.) |
⊢ (2 + 1) = 3 | ||
Theorem | 1p2e3 12359 | 1 + 2 = 3. For a shorter proof using addcomli 11410, see 1p2e3ALT 12360. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 12-Dec-2022.) |
⊢ (1 + 2) = 3 | ||
Theorem | 1p2e3ALT 12360 | Alternate proof of 1p2e3 12359, shorter but using more axioms. (Contributed by David A. Wheeler, 8-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (1 + 2) = 3 | ||
Theorem | 3p1e4 12361 | 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.) |
⊢ (3 + 1) = 4 | ||
Theorem | 4p1e5 12362 | 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.) |
⊢ (4 + 1) = 5 | ||
Theorem | 5p1e6 12363 | 5 + 1 = 6. (Contributed by Mario Carneiro, 18-Apr-2015.) |
⊢ (5 + 1) = 6 | ||
Theorem | 6p1e7 12364 | 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.) |
⊢ (6 + 1) = 7 | ||
Theorem | 7p1e8 12365 | 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.) |
⊢ (7 + 1) = 8 | ||
Theorem | 8p1e9 12366 | 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.) |
⊢ (8 + 1) = 9 | ||
Theorem | 3p2e5 12367 | 3 + 2 = 5. (Contributed by NM, 11-May-2004.) |
⊢ (3 + 2) = 5 | ||
Theorem | 3p3e6 12368 | 3 + 3 = 6. (Contributed by NM, 11-May-2004.) |
⊢ (3 + 3) = 6 | ||
Theorem | 4p2e6 12369 | 4 + 2 = 6. (Contributed by NM, 11-May-2004.) |
⊢ (4 + 2) = 6 | ||
Theorem | 4p3e7 12370 | 4 + 3 = 7. (Contributed by NM, 11-May-2004.) |
⊢ (4 + 3) = 7 | ||
Theorem | 4p4e8 12371 | 4 + 4 = 8. (Contributed by NM, 11-May-2004.) |
⊢ (4 + 4) = 8 | ||
Theorem | 5p2e7 12372 | 5 + 2 = 7. (Contributed by NM, 11-May-2004.) |
⊢ (5 + 2) = 7 | ||
Theorem | 5p3e8 12373 | 5 + 3 = 8. (Contributed by NM, 11-May-2004.) |
⊢ (5 + 3) = 8 | ||
Theorem | 5p4e9 12374 | 5 + 4 = 9. (Contributed by NM, 11-May-2004.) |
⊢ (5 + 4) = 9 | ||
Theorem | 6p2e8 12375 | 6 + 2 = 8. (Contributed by NM, 11-May-2004.) |
⊢ (6 + 2) = 8 | ||
Theorem | 6p3e9 12376 | 6 + 3 = 9. (Contributed by NM, 11-May-2004.) |
⊢ (6 + 3) = 9 | ||
Theorem | 7p2e9 12377 | 7 + 2 = 9. (Contributed by NM, 11-May-2004.) |
⊢ (7 + 2) = 9 | ||
Theorem | 1t1e1 12378 | 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ (1 · 1) = 1 | ||
Theorem | 2t1e2 12379 | 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
⊢ (2 · 1) = 2 | ||
Theorem | 2t2e4 12380 | 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
⊢ (2 · 2) = 4 | ||
Theorem | 3t1e3 12381 | 3 times 1 equals 3. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (3 · 1) = 3 | ||
Theorem | 3t2e6 12382 | 3 times 2 equals 6. (Contributed by NM, 2-Aug-2004.) |
⊢ (3 · 2) = 6 | ||
Theorem | 3t3e9 12383 | 3 times 3 equals 9. (Contributed by NM, 11-May-2004.) |
⊢ (3 · 3) = 9 | ||
Theorem | 4t2e8 12384 | 4 times 2 equals 8. (Contributed by NM, 2-Aug-2004.) |
⊢ (4 · 2) = 8 | ||
Theorem | 2t0e0 12385 | 2 times 0 equals 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (2 · 0) = 0 | ||
Theorem | 4d2e2 12386 | One half of four is two. (Contributed by NM, 3-Sep-1999.) |
⊢ (4 / 2) = 2 | ||
Theorem | 1lt2 12387 | 1 is less than 2. (Contributed by NM, 24-Feb-2005.) |
⊢ 1 < 2 | ||
Theorem | 2lt3 12388 | 2 is less than 3. (Contributed by NM, 26-Sep-2010.) |
⊢ 2 < 3 | ||
Theorem | 1lt3 12389 | 1 is less than 3. (Contributed by NM, 26-Sep-2010.) |
⊢ 1 < 3 | ||
Theorem | 3lt4 12390 | 3 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 3 < 4 | ||
Theorem | 2lt4 12391 | 2 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 2 < 4 | ||
Theorem | 1lt4 12392 | 1 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 1 < 4 | ||
Theorem | 4lt5 12393 | 4 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 4 < 5 | ||
Theorem | 3lt5 12394 | 3 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 3 < 5 | ||
Theorem | 2lt5 12395 | 2 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 2 < 5 | ||
Theorem | 1lt5 12396 | 1 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 1 < 5 | ||
Theorem | 5lt6 12397 | 5 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 5 < 6 | ||
Theorem | 4lt6 12398 | 4 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 4 < 6 | ||
Theorem | 3lt6 12399 | 3 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 3 < 6 | ||
Theorem | 2lt6 12400 | 2 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 2 < 6 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |