MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  8pos Structured version   Visualization version   GIF version

Theorem 8pos 12355
Description: The number 8 is positive. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
8pos 0 < 8

Proof of Theorem 8pos
StepHypRef Expression
1 7re 12336 . . 3 7 ∈ ℝ
2 1re 11245 . . 3 1 ∈ ℝ
3 7pos 12354 . . 3 0 < 7
4 0lt1 11767 . . 3 0 < 1
51, 2, 3, 4addgt0ii 11787 . 2 0 < (7 + 1)
6 df-8 12312 . 2 8 = (7 + 1)
75, 6breqtrri 5175 1 0 < 8
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 5148  (class class class)co 7420  0cc0 11139  1c1 11140   + caddc 11142   < clt 11279  7c7 12303  8c8 12304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312
This theorem is referenced by:  9pos  12356  8th4div3  12463  chtub  27158  bposlem8  27237  bposlem9  27238  lgsdir2lem1  27271  lgsdir2lem4  27274  lgsdir2lem5  27275  2lgsoddprmlem1  27354  2lgsoddprmlem2  27355  2lgsoddprmlem3a  27356  2lgsoddprmlem3b  27357  2lgsoddprmlem3c  27358  2lgsoddprmlem3d  27359  chebbnd1lem2  27416  chebbnd1lem3  27417  pntlemf  27551  hgt750lem  34283  lcmineqlem23  41522  aks4d1p1  41547  imsqrtvalex  43076  fmtnoprmfac2lem1  46906
  Copyright terms: Public domain W3C validator