| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8pos | Structured version Visualization version GIF version | ||
| Description: The number 8 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 8pos | ⊢ 0 < 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7re 12286 | . . 3 ⊢ 7 ∈ ℝ | |
| 2 | 1re 11181 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | 7pos 12304 | . . 3 ⊢ 0 < 7 | |
| 4 | 0lt1 11707 | . . 3 ⊢ 0 < 1 | |
| 5 | 1, 2, 3, 4 | addgt0ii 11727 | . 2 ⊢ 0 < (7 + 1) |
| 6 | df-8 12262 | . 2 ⊢ 8 = (7 + 1) | |
| 7 | 5, 6 | breqtrri 5137 | 1 ⊢ 0 < 8 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5110 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 < clt 11215 7c7 12253 8c8 12254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 |
| This theorem is referenced by: 9pos 12306 8th4div3 12409 chtub 27130 bposlem8 27209 bposlem9 27210 lgsdir2lem1 27243 lgsdir2lem4 27246 lgsdir2lem5 27247 2lgsoddprmlem1 27326 2lgsoddprmlem2 27327 2lgsoddprmlem3a 27328 2lgsoddprmlem3b 27329 2lgsoddprmlem3c 27330 2lgsoddprmlem3d 27331 chebbnd1lem2 27388 chebbnd1lem3 27389 pntlemf 27523 hgt750lem 34649 lcmineqlem23 42046 aks4d1p1 42071 8rp 42298 imsqrtvalex 43642 fmtnoprmfac2lem1 47571 |
| Copyright terms: Public domain | W3C validator |