| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8re | Structured version Visualization version GIF version | ||
| Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 8re | ⊢ 8 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12314 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7re 12338 | . . 3 ⊢ 7 ∈ ℝ | |
| 3 | 1re 11240 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11255 | . 2 ⊢ (7 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2831 | 1 ⊢ 8 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7410 ℝcr 11133 1c1 11135 + caddc 11137 7c7 12305 8c8 12306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-i2m1 11202 ax-1ne0 11203 ax-rrecex 11206 ax-cnre 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 |
| This theorem is referenced by: 9re 12344 9pos 12358 6lt8 12438 5lt8 12439 4lt8 12440 3lt8 12441 2lt8 12442 1lt8 12443 8lt9 12444 7lt9 12445 8th4div3 12466 8lt10 12845 7lt10 12846 ef01bndlem 16207 cos2bnd 16211 slotstnscsi 17379 slotsdnscsi 17411 chtub 27180 bposlem8 27259 bposlem9 27260 lgsdir2lem1 27293 lgsdir2lem4 27296 lgsdir2lem5 27297 2lgsoddprmlem1 27376 2lgsoddprmlem2 27377 chebbnd1lem2 27438 chebbnd1lem3 27439 chebbnd1 27440 pntlemf 27573 hgt750lem 34688 hgt750lem2 34689 hgt750leme 34695 lcmineqlem23 42069 lcmineqlem 42070 3lexlogpow5ineq2 42073 aks4d1p1 42094 8rp 42321 resqrtvalex 43644 imsqrtvalex 43645 fmtnoprmfac2lem1 47560 mod42tp1mod8 47596 nnsum3primesle9 47788 nnsum4primesoddALTV 47791 nnsum4primesevenALTV 47795 bgoldbtbndlem1 47799 tgoldbach 47811 |
| Copyright terms: Public domain | W3C validator |