![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8re | Structured version Visualization version GIF version |
Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
8re | ⊢ 8 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 12362 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7re 12386 | . . 3 ⊢ 7 ∈ ℝ | |
3 | 1re 11290 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 11305 | . 2 ⊢ (7 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ 8 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 ℝcr 11183 1c1 11185 + caddc 11187 7c7 12353 8c8 12354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rrecex 11256 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 |
This theorem is referenced by: 9re 12392 9pos 12406 6lt8 12486 5lt8 12487 4lt8 12488 3lt8 12489 2lt8 12490 1lt8 12491 8lt9 12492 7lt9 12493 8th4div3 12513 8lt10 12890 7lt10 12891 ef01bndlem 16232 cos2bnd 16236 slotstnscsi 17419 slotsdnscsi 17451 sralemOLD 21199 chtub 27274 bposlem8 27353 bposlem9 27354 lgsdir2lem1 27387 lgsdir2lem4 27390 lgsdir2lem5 27391 2lgsoddprmlem1 27470 2lgsoddprmlem2 27471 chebbnd1lem2 27532 chebbnd1lem3 27533 chebbnd1 27534 pntlemf 27667 cchhllemOLD 28920 hgt750lem 34628 hgt750lem2 34629 hgt750leme 34635 lcmineqlem23 42008 lcmineqlem 42009 3lexlogpow5ineq2 42012 aks4d1p1 42033 8rp 42291 resqrtvalex 43607 imsqrtvalex 43608 fmtnoprmfac2lem1 47440 mod42tp1mod8 47476 nnsum3primesle9 47668 nnsum4primesoddALTV 47671 nnsum4primesevenALTV 47675 bgoldbtbndlem1 47679 tgoldbach 47691 |
Copyright terms: Public domain | W3C validator |