| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8re | Structured version Visualization version GIF version | ||
| Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 8re | ⊢ 8 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12255 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7re 12279 | . . 3 ⊢ 7 ∈ ℝ | |
| 3 | 1re 11174 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11189 | . 2 ⊢ (7 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 8 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 ℝcr 11067 1c1 11069 + caddc 11071 7c7 12246 8c8 12247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-i2m1 11136 ax-1ne0 11137 ax-rrecex 11140 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 |
| This theorem is referenced by: 9re 12285 9pos 12299 6lt8 12374 5lt8 12375 4lt8 12376 3lt8 12377 2lt8 12378 1lt8 12379 8lt9 12380 7lt9 12381 8th4div3 12402 8lt10 12781 7lt10 12782 ef01bndlem 16152 cos2bnd 16156 slotstnscsi 17323 slotsdnscsi 17355 chtub 27123 bposlem8 27202 bposlem9 27203 lgsdir2lem1 27236 lgsdir2lem4 27239 lgsdir2lem5 27240 2lgsoddprmlem1 27319 2lgsoddprmlem2 27320 chebbnd1lem2 27381 chebbnd1lem3 27382 chebbnd1 27383 pntlemf 27516 hgt750lem 34642 hgt750lem2 34643 hgt750leme 34649 lcmineqlem23 42039 lcmineqlem 42040 3lexlogpow5ineq2 42043 aks4d1p1 42064 8rp 42291 resqrtvalex 43634 imsqrtvalex 43635 fmtnoprmfac2lem1 47567 mod42tp1mod8 47603 nnsum3primesle9 47795 nnsum4primesoddALTV 47798 nnsum4primesevenALTV 47802 bgoldbtbndlem1 47806 tgoldbach 47818 |
| Copyright terms: Public domain | W3C validator |