Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 8re | Structured version Visualization version GIF version |
Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
8re | ⊢ 8 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 11972 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7re 11996 | . . 3 ⊢ 7 ∈ ℝ | |
3 | 1re 10906 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 10921 | . 2 ⊢ (7 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 8 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 ℝcr 10801 1c1 10803 + caddc 10805 7c7 11963 8c8 11964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-i2m1 10870 ax-1ne0 10871 ax-rrecex 10874 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 |
This theorem is referenced by: 9re 12002 9pos 12016 6lt8 12096 5lt8 12097 4lt8 12098 3lt8 12099 2lt8 12100 1lt8 12101 8lt9 12102 7lt9 12103 8th4div3 12123 8lt10 12498 7lt10 12499 ef01bndlem 15821 cos2bnd 15825 slotstnscsi 16994 slotsdnscsi 17023 sralemOLD 20355 chtub 26265 bposlem8 26344 bposlem9 26345 lgsdir2lem1 26378 lgsdir2lem4 26381 lgsdir2lem5 26382 2lgsoddprmlem1 26461 2lgsoddprmlem2 26462 chebbnd1lem2 26523 chebbnd1lem3 26524 chebbnd1 26525 pntlemf 26658 cchhllemOLD 27158 hgt750lem 32531 hgt750lem2 32532 hgt750leme 32538 lcmineqlem23 39987 lcmineqlem 39988 3lexlogpow5ineq2 39991 aks4d1p1 40012 resqrtvalex 41142 imsqrtvalex 41143 fmtnoprmfac2lem1 44906 mod42tp1mod8 44942 nnsum3primesle9 45134 nnsum4primesoddALTV 45137 nnsum4primesevenALTV 45141 bgoldbtbndlem1 45145 tgoldbach 45157 |
Copyright terms: Public domain | W3C validator |