| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8re | Structured version Visualization version GIF version | ||
| Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 8re | ⊢ 8 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12231 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7re 12255 | . . 3 ⊢ 7 ∈ ℝ | |
| 3 | 1re 11150 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11165 | . 2 ⊢ (7 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 8 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 ℝcr 11043 1c1 11045 + caddc 11047 7c7 12222 8c8 12223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-i2m1 11112 ax-1ne0 11113 ax-rrecex 11116 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 |
| This theorem is referenced by: 9re 12261 9pos 12275 6lt8 12350 5lt8 12351 4lt8 12352 3lt8 12353 2lt8 12354 1lt8 12355 8lt9 12356 7lt9 12357 8th4div3 12378 8lt10 12757 7lt10 12758 ef01bndlem 16128 cos2bnd 16132 slotstnscsi 17299 slotsdnscsi 17331 chtub 27156 bposlem8 27235 bposlem9 27236 lgsdir2lem1 27269 lgsdir2lem4 27272 lgsdir2lem5 27273 2lgsoddprmlem1 27352 2lgsoddprmlem2 27353 chebbnd1lem2 27414 chebbnd1lem3 27415 chebbnd1 27416 pntlemf 27549 hgt750lem 34635 hgt750lem2 34636 hgt750leme 34642 lcmineqlem23 42032 lcmineqlem 42033 3lexlogpow5ineq2 42036 aks4d1p1 42057 8rp 42284 resqrtvalex 43627 imsqrtvalex 43628 fmtnoprmfac2lem1 47560 mod42tp1mod8 47596 nnsum3primesle9 47788 nnsum4primesoddALTV 47791 nnsum4primesevenALTV 47795 bgoldbtbndlem1 47799 tgoldbach 47811 |
| Copyright terms: Public domain | W3C validator |