Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 8re | Structured version Visualization version GIF version |
Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
8re | ⊢ 8 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 12122 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7re 12146 | . . 3 ⊢ 7 ∈ ℝ | |
3 | 1re 11055 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 11070 | . 2 ⊢ (7 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2834 | 1 ⊢ 8 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7317 ℝcr 10950 1c1 10952 + caddc 10954 7c7 12113 8c8 12114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-i2m1 11019 ax-1ne0 11020 ax-rrecex 11023 ax-cnre 11024 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-iota 6418 df-fv 6474 df-ov 7320 df-2 12116 df-3 12117 df-4 12118 df-5 12119 df-6 12120 df-7 12121 df-8 12122 |
This theorem is referenced by: 9re 12152 9pos 12166 6lt8 12246 5lt8 12247 4lt8 12248 3lt8 12249 2lt8 12250 1lt8 12251 8lt9 12252 7lt9 12253 8th4div3 12273 8lt10 12649 7lt10 12650 ef01bndlem 15972 cos2bnd 15976 slotstnscsi 17147 slotsdnscsi 17179 sralemOLD 20523 chtub 26443 bposlem8 26522 bposlem9 26523 lgsdir2lem1 26556 lgsdir2lem4 26559 lgsdir2lem5 26560 2lgsoddprmlem1 26639 2lgsoddprmlem2 26640 chebbnd1lem2 26701 chebbnd1lem3 26702 chebbnd1 26703 pntlemf 26836 cchhllemOLD 27391 hgt750lem 32771 hgt750lem2 32772 hgt750leme 32778 lcmineqlem23 40280 lcmineqlem 40281 3lexlogpow5ineq2 40284 aks4d1p1 40305 resqrtvalex 41487 imsqrtvalex 41488 fmtnoprmfac2lem1 45283 mod42tp1mod8 45319 nnsum3primesle9 45511 nnsum4primesoddALTV 45514 nnsum4primesevenALTV 45518 bgoldbtbndlem1 45522 tgoldbach 45534 |
Copyright terms: Public domain | W3C validator |