| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8re | Structured version Visualization version GIF version | ||
| Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 8re | ⊢ 8 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12194 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7re 12218 | . . 3 ⊢ 7 ∈ ℝ | |
| 3 | 1re 11112 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11127 | . 2 ⊢ (7 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 8 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 ℝcr 11005 1c1 11007 + caddc 11009 7c7 12185 8c8 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-rrecex 11078 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 |
| This theorem is referenced by: 9re 12224 9pos 12238 6lt8 12313 5lt8 12314 4lt8 12315 3lt8 12316 2lt8 12317 1lt8 12318 8lt9 12319 7lt9 12320 8th4div3 12341 8lt10 12720 7lt10 12721 ef01bndlem 16093 cos2bnd 16097 slotstnscsi 17264 slotsdnscsi 17296 chtub 27150 bposlem8 27229 bposlem9 27230 lgsdir2lem1 27263 lgsdir2lem4 27266 lgsdir2lem5 27267 2lgsoddprmlem1 27346 2lgsoddprmlem2 27347 chebbnd1lem2 27408 chebbnd1lem3 27409 chebbnd1 27410 pntlemf 27543 hgt750lem 34664 hgt750lem2 34665 hgt750leme 34671 lcmineqlem23 42154 lcmineqlem 42155 3lexlogpow5ineq2 42158 aks4d1p1 42179 8rp 42406 resqrtvalex 43748 imsqrtvalex 43749 fmtnoprmfac2lem1 47676 mod42tp1mod8 47712 nnsum3primesle9 47904 nnsum4primesoddALTV 47907 nnsum4primesevenALTV 47911 bgoldbtbndlem1 47915 tgoldbach 47927 |
| Copyright terms: Public domain | W3C validator |