Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 8re | Structured version Visualization version GIF version |
Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
8re | ⊢ 8 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 12042 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7re 12066 | . . 3 ⊢ 7 ∈ ℝ | |
3 | 1re 10975 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 10990 | . 2 ⊢ (7 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 8 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 ℝcr 10870 1c1 10872 + caddc 10874 7c7 12033 8c8 12034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-i2m1 10939 ax-1ne0 10940 ax-rrecex 10943 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 |
This theorem is referenced by: 9re 12072 9pos 12086 6lt8 12166 5lt8 12167 4lt8 12168 3lt8 12169 2lt8 12170 1lt8 12171 8lt9 12172 7lt9 12173 8th4div3 12193 8lt10 12569 7lt10 12570 ef01bndlem 15893 cos2bnd 15897 slotstnscsi 17070 slotsdnscsi 17102 sralemOLD 20440 chtub 26360 bposlem8 26439 bposlem9 26440 lgsdir2lem1 26473 lgsdir2lem4 26476 lgsdir2lem5 26477 2lgsoddprmlem1 26556 2lgsoddprmlem2 26557 chebbnd1lem2 26618 chebbnd1lem3 26619 chebbnd1 26620 pntlemf 26753 cchhllemOLD 27255 hgt750lem 32631 hgt750lem2 32632 hgt750leme 32638 lcmineqlem23 40059 lcmineqlem 40060 3lexlogpow5ineq2 40063 aks4d1p1 40084 resqrtvalex 41253 imsqrtvalex 41254 fmtnoprmfac2lem1 45018 mod42tp1mod8 45054 nnsum3primesle9 45246 nnsum4primesoddALTV 45249 nnsum4primesevenALTV 45253 bgoldbtbndlem1 45257 tgoldbach 45269 |
Copyright terms: Public domain | W3C validator |