MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6p2e8 Structured version   Visualization version   GIF version

Theorem 6p2e8 12279
Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
6p2e8 (6 + 2) = 8

Proof of Theorem 6p2e8
StepHypRef Expression
1 df-2 12188 . . . . 5 2 = (1 + 1)
21oveq2i 7357 . . . 4 (6 + 2) = (6 + (1 + 1))
3 6cn 12216 . . . . 5 6 ∈ ℂ
4 ax-1cn 11064 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 11122 . . . 4 ((6 + 1) + 1) = (6 + (1 + 1))
62, 5eqtr4i 2757 . . 3 (6 + 2) = ((6 + 1) + 1)
7 df-7 12193 . . . 4 7 = (6 + 1)
87oveq1i 7356 . . 3 (7 + 1) = ((6 + 1) + 1)
96, 8eqtr4i 2757 . 2 (6 + 2) = (7 + 1)
10 df-8 12194 . 2 8 = (7 + 1)
119, 10eqtr4i 2757 1 (6 + 2) = 8
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7346  1c1 11007   + caddc 11009  2c2 12180  6c6 12184  7c7 12185  8c8 12186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-1cn 11064  ax-addcl 11066  ax-addass 11071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194
This theorem is referenced by:  6p3e9  12280  6t3e18  12693  83prm  17034  1259lem2  17043  1259lem5  17046  2503lem2  17049  2503lem3  17050  4001lem1  17052  log2ub  26886  hgt750lem2  34665  3exp7  42094  3cubeslem3l  42727  resqrtvalex  43686  imsqrtvalex  43687  lhe4.4ex1a  44370  fmtno5faclem3  47620
  Copyright terms: Public domain W3C validator