MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6p2e8 Structured version   Visualization version   GIF version

Theorem 6p2e8 12422
Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
6p2e8 (6 + 2) = 8

Proof of Theorem 6p2e8
StepHypRef Expression
1 df-2 12326 . . . . 5 2 = (1 + 1)
21oveq2i 7441 . . . 4 (6 + 2) = (6 + (1 + 1))
3 6cn 12354 . . . . 5 6 ∈ ℂ
4 ax-1cn 11210 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 11268 . . . 4 ((6 + 1) + 1) = (6 + (1 + 1))
62, 5eqtr4i 2765 . . 3 (6 + 2) = ((6 + 1) + 1)
7 df-7 12331 . . . 4 7 = (6 + 1)
87oveq1i 7440 . . 3 (7 + 1) = ((6 + 1) + 1)
96, 8eqtr4i 2765 . 2 (6 + 2) = (7 + 1)
10 df-8 12332 . 2 8 = (7 + 1)
119, 10eqtr4i 2765 1 (6 + 2) = 8
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  (class class class)co 7430  1c1 11153   + caddc 11155  2c2 12318  6c6 12322  7c7 12323  8c8 12324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-1cn 11210  ax-addcl 11212  ax-addass 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-iota 6515  df-fv 6570  df-ov 7433  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332
This theorem is referenced by:  6p3e9  12423  6t3e18  12835  83prm  17156  1259lem2  17165  1259lem5  17168  2503lem2  17171  2503lem3  17172  4001lem1  17174  log2ub  27006  hgt750lem2  34645  3exp7  42034  3cubeslem3l  42673  resqrtvalex  43634  imsqrtvalex  43635  lhe4.4ex1a  44324  fmtno5faclem3  47505
  Copyright terms: Public domain W3C validator