| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6p2e8 | Structured version Visualization version GIF version | ||
| Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 6p2e8 | ⊢ (6 + 2) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12188 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7357 | . . . 4 ⊢ (6 + 2) = (6 + (1 + 1)) |
| 3 | 6cn 12216 | . . . . 5 ⊢ 6 ∈ ℂ | |
| 4 | ax-1cn 11064 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11122 | . . . 4 ⊢ ((6 + 1) + 1) = (6 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2757 | . . 3 ⊢ (6 + 2) = ((6 + 1) + 1) |
| 7 | df-7 12193 | . . . 4 ⊢ 7 = (6 + 1) | |
| 8 | 7 | oveq1i 7356 | . . 3 ⊢ (7 + 1) = ((6 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2757 | . 2 ⊢ (6 + 2) = (7 + 1) |
| 10 | df-8 12194 | . 2 ⊢ 8 = (7 + 1) | |
| 11 | 9, 10 | eqtr4i 2757 | 1 ⊢ (6 + 2) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 1c1 11007 + caddc 11009 2c2 12180 6c6 12184 7c7 12185 8c8 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-addcl 11066 ax-addass 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 |
| This theorem is referenced by: 6p3e9 12280 6t3e18 12693 83prm 17034 1259lem2 17043 1259lem5 17046 2503lem2 17049 2503lem3 17050 4001lem1 17052 log2ub 26886 hgt750lem2 34665 3exp7 42094 3cubeslem3l 42727 resqrtvalex 43686 imsqrtvalex 43687 lhe4.4ex1a 44370 fmtno5faclem3 47620 |
| Copyright terms: Public domain | W3C validator |