![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6p2e8 | Structured version Visualization version GIF version |
Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
6p2e8 | ⊢ (6 + 2) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12308 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7430 | . . . 4 ⊢ (6 + 2) = (6 + (1 + 1)) |
3 | 6cn 12336 | . . . . 5 ⊢ 6 ∈ ℂ | |
4 | ax-1cn 11198 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 11256 | . . . 4 ⊢ ((6 + 1) + 1) = (6 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2756 | . . 3 ⊢ (6 + 2) = ((6 + 1) + 1) |
7 | df-7 12313 | . . . 4 ⊢ 7 = (6 + 1) | |
8 | 7 | oveq1i 7429 | . . 3 ⊢ (7 + 1) = ((6 + 1) + 1) |
9 | 6, 8 | eqtr4i 2756 | . 2 ⊢ (6 + 2) = (7 + 1) |
10 | df-8 12314 | . 2 ⊢ 8 = (7 + 1) | |
11 | 9, 10 | eqtr4i 2756 | 1 ⊢ (6 + 2) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 (class class class)co 7419 1c1 11141 + caddc 11143 2c2 12300 6c6 12304 7c7 12305 8c8 12306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-1cn 11198 ax-addcl 11200 ax-addass 11205 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 df-ov 7422 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 |
This theorem is referenced by: 6p3e9 12405 6t3e18 12815 83prm 17095 1259lem2 17104 1259lem5 17107 2503lem2 17110 2503lem3 17111 4001lem1 17113 log2ub 26926 hgt750lem2 34415 3exp7 41656 3cubeslem3l 42248 resqrtvalex 43217 imsqrtvalex 43218 lhe4.4ex1a 43908 fmtno5faclem3 47058 |
Copyright terms: Public domain | W3C validator |