MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6p2e8 Structured version   Visualization version   GIF version

Theorem 6p2e8 12347
Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
6p2e8 (6 + 2) = 8

Proof of Theorem 6p2e8
StepHypRef Expression
1 df-2 12256 . . . . 5 2 = (1 + 1)
21oveq2i 7401 . . . 4 (6 + 2) = (6 + (1 + 1))
3 6cn 12284 . . . . 5 6 ∈ ℂ
4 ax-1cn 11133 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 11191 . . . 4 ((6 + 1) + 1) = (6 + (1 + 1))
62, 5eqtr4i 2756 . . 3 (6 + 2) = ((6 + 1) + 1)
7 df-7 12261 . . . 4 7 = (6 + 1)
87oveq1i 7400 . . 3 (7 + 1) = ((6 + 1) + 1)
96, 8eqtr4i 2756 . 2 (6 + 2) = (7 + 1)
10 df-8 12262 . 2 8 = (7 + 1)
119, 10eqtr4i 2756 1 (6 + 2) = 8
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7390  1c1 11076   + caddc 11078  2c2 12248  6c6 12252  7c7 12253  8c8 12254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-1cn 11133  ax-addcl 11135  ax-addass 11140
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262
This theorem is referenced by:  6p3e9  12348  6t3e18  12761  83prm  17100  1259lem2  17109  1259lem5  17112  2503lem2  17115  2503lem3  17116  4001lem1  17118  log2ub  26866  hgt750lem2  34650  3exp7  42048  3cubeslem3l  42681  resqrtvalex  43641  imsqrtvalex  43642  lhe4.4ex1a  44325  fmtno5faclem3  47586
  Copyright terms: Public domain W3C validator