MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6p2e8 Structured version   Visualization version   GIF version

Theorem 6p2e8 12452
Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
6p2e8 (6 + 2) = 8

Proof of Theorem 6p2e8
StepHypRef Expression
1 df-2 12356 . . . . 5 2 = (1 + 1)
21oveq2i 7459 . . . 4 (6 + 2) = (6 + (1 + 1))
3 6cn 12384 . . . . 5 6 ∈ ℂ
4 ax-1cn 11242 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 11300 . . . 4 ((6 + 1) + 1) = (6 + (1 + 1))
62, 5eqtr4i 2771 . . 3 (6 + 2) = ((6 + 1) + 1)
7 df-7 12361 . . . 4 7 = (6 + 1)
87oveq1i 7458 . . 3 (7 + 1) = ((6 + 1) + 1)
96, 8eqtr4i 2771 . 2 (6 + 2) = (7 + 1)
10 df-8 12362 . 2 8 = (7 + 1)
119, 10eqtr4i 2771 1 (6 + 2) = 8
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  (class class class)co 7448  1c1 11185   + caddc 11187  2c2 12348  6c6 12352  7c7 12353  8c8 12354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-1cn 11242  ax-addcl 11244  ax-addass 11249
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362
This theorem is referenced by:  6p3e9  12453  6t3e18  12863  83prm  17170  1259lem2  17179  1259lem5  17182  2503lem2  17185  2503lem3  17186  4001lem1  17188  log2ub  27010  hgt750lem2  34629  3exp7  42010  3cubeslem3l  42642  resqrtvalex  43607  imsqrtvalex  43608  lhe4.4ex1a  44298  fmtno5faclem3  47455
  Copyright terms: Public domain W3C validator