MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6p2e8 Structured version   Visualization version   GIF version

Theorem 6p2e8 12425
Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
6p2e8 (6 + 2) = 8

Proof of Theorem 6p2e8
StepHypRef Expression
1 df-2 12329 . . . . 5 2 = (1 + 1)
21oveq2i 7442 . . . 4 (6 + 2) = (6 + (1 + 1))
3 6cn 12357 . . . . 5 6 ∈ ℂ
4 ax-1cn 11213 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 11271 . . . 4 ((6 + 1) + 1) = (6 + (1 + 1))
62, 5eqtr4i 2768 . . 3 (6 + 2) = ((6 + 1) + 1)
7 df-7 12334 . . . 4 7 = (6 + 1)
87oveq1i 7441 . . 3 (7 + 1) = ((6 + 1) + 1)
96, 8eqtr4i 2768 . 2 (6 + 2) = (7 + 1)
10 df-8 12335 . 2 8 = (7 + 1)
119, 10eqtr4i 2768 1 (6 + 2) = 8
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7431  1c1 11156   + caddc 11158  2c2 12321  6c6 12325  7c7 12326  8c8 12327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-1cn 11213  ax-addcl 11215  ax-addass 11220
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335
This theorem is referenced by:  6p3e9  12426  6t3e18  12838  83prm  17160  1259lem2  17169  1259lem5  17172  2503lem2  17175  2503lem3  17176  4001lem1  17178  log2ub  26992  hgt750lem2  34667  3exp7  42054  3cubeslem3l  42697  resqrtvalex  43658  imsqrtvalex  43659  lhe4.4ex1a  44348  fmtno5faclem3  47568
  Copyright terms: Public domain W3C validator