Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6p2e8 | Structured version Visualization version GIF version |
Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
6p2e8 | ⊢ (6 + 2) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12036 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7286 | . . . 4 ⊢ (6 + 2) = (6 + (1 + 1)) |
3 | 6cn 12064 | . . . . 5 ⊢ 6 ∈ ℂ | |
4 | ax-1cn 10929 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 10985 | . . . 4 ⊢ ((6 + 1) + 1) = (6 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2769 | . . 3 ⊢ (6 + 2) = ((6 + 1) + 1) |
7 | df-7 12041 | . . . 4 ⊢ 7 = (6 + 1) | |
8 | 7 | oveq1i 7285 | . . 3 ⊢ (7 + 1) = ((6 + 1) + 1) |
9 | 6, 8 | eqtr4i 2769 | . 2 ⊢ (6 + 2) = (7 + 1) |
10 | df-8 12042 | . 2 ⊢ 8 = (7 + 1) | |
11 | 9, 10 | eqtr4i 2769 | 1 ⊢ (6 + 2) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7275 1c1 10872 + caddc 10874 2c2 12028 6c6 12032 7c7 12033 8c8 12034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-1cn 10929 ax-addcl 10931 ax-addass 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 |
This theorem is referenced by: 6p3e9 12133 6t3e18 12542 83prm 16824 1259lem2 16833 1259lem5 16836 2503lem2 16839 2503lem3 16840 4001lem1 16842 log2ub 26099 hgt750lem2 32632 3exp7 40061 3cubeslem3l 40508 resqrtvalex 41253 imsqrtvalex 41254 lhe4.4ex1a 41947 fmtno5faclem3 45033 |
Copyright terms: Public domain | W3C validator |