| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6p2e8 | Structured version Visualization version GIF version | ||
| Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 6p2e8 | ⊢ (6 + 2) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12301 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7414 | . . . 4 ⊢ (6 + 2) = (6 + (1 + 1)) |
| 3 | 6cn 12329 | . . . . 5 ⊢ 6 ∈ ℂ | |
| 4 | ax-1cn 11185 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11243 | . . . 4 ⊢ ((6 + 1) + 1) = (6 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2761 | . . 3 ⊢ (6 + 2) = ((6 + 1) + 1) |
| 7 | df-7 12306 | . . . 4 ⊢ 7 = (6 + 1) | |
| 8 | 7 | oveq1i 7413 | . . 3 ⊢ (7 + 1) = ((6 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2761 | . 2 ⊢ (6 + 2) = (7 + 1) |
| 10 | df-8 12307 | . 2 ⊢ 8 = (7 + 1) | |
| 11 | 9, 10 | eqtr4i 2761 | 1 ⊢ (6 + 2) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7403 1c1 11128 + caddc 11130 2c2 12293 6c6 12297 7c7 12298 8c8 12299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11185 ax-addcl 11187 ax-addass 11192 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 |
| This theorem is referenced by: 6p3e9 12398 6t3e18 12811 83prm 17140 1259lem2 17149 1259lem5 17152 2503lem2 17155 2503lem3 17156 4001lem1 17158 log2ub 26909 hgt750lem2 34630 3exp7 42012 3cubeslem3l 42656 resqrtvalex 43616 imsqrtvalex 43617 lhe4.4ex1a 44301 fmtno5faclem3 47543 |
| Copyright terms: Public domain | W3C validator |