| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6p2e8 | Structured version Visualization version GIF version | ||
| Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 6p2e8 | ⊢ (6 + 2) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12329 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7442 | . . . 4 ⊢ (6 + 2) = (6 + (1 + 1)) |
| 3 | 6cn 12357 | . . . . 5 ⊢ 6 ∈ ℂ | |
| 4 | ax-1cn 11213 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11271 | . . . 4 ⊢ ((6 + 1) + 1) = (6 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2768 | . . 3 ⊢ (6 + 2) = ((6 + 1) + 1) |
| 7 | df-7 12334 | . . . 4 ⊢ 7 = (6 + 1) | |
| 8 | 7 | oveq1i 7441 | . . 3 ⊢ (7 + 1) = ((6 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2768 | . 2 ⊢ (6 + 2) = (7 + 1) |
| 10 | df-8 12335 | . 2 ⊢ 8 = (7 + 1) | |
| 11 | 9, 10 | eqtr4i 2768 | 1 ⊢ (6 + 2) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7431 1c1 11156 + caddc 11158 2c2 12321 6c6 12325 7c7 12326 8c8 12327 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-1cn 11213 ax-addcl 11215 ax-addass 11220 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 |
| This theorem is referenced by: 6p3e9 12426 6t3e18 12838 83prm 17160 1259lem2 17169 1259lem5 17172 2503lem2 17175 2503lem3 17176 4001lem1 17178 log2ub 26992 hgt750lem2 34667 3exp7 42054 3cubeslem3l 42697 resqrtvalex 43658 imsqrtvalex 43659 lhe4.4ex1a 44348 fmtno5faclem3 47568 |
| Copyright terms: Public domain | W3C validator |