| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6p2e8 | Structured version Visualization version GIF version | ||
| Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 6p2e8 | ⊢ (6 + 2) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12225 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7380 | . . . 4 ⊢ (6 + 2) = (6 + (1 + 1)) |
| 3 | 6cn 12253 | . . . . 5 ⊢ 6 ∈ ℂ | |
| 4 | ax-1cn 11102 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11160 | . . . 4 ⊢ ((6 + 1) + 1) = (6 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2755 | . . 3 ⊢ (6 + 2) = ((6 + 1) + 1) |
| 7 | df-7 12230 | . . . 4 ⊢ 7 = (6 + 1) | |
| 8 | 7 | oveq1i 7379 | . . 3 ⊢ (7 + 1) = ((6 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2755 | . 2 ⊢ (6 + 2) = (7 + 1) |
| 10 | df-8 12231 | . 2 ⊢ 8 = (7 + 1) | |
| 11 | 9, 10 | eqtr4i 2755 | 1 ⊢ (6 + 2) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 + caddc 11047 2c2 12217 6c6 12221 7c7 12222 8c8 12223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-addcl 11104 ax-addass 11109 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 |
| This theorem is referenced by: 6p3e9 12317 6t3e18 12730 83prm 17069 1259lem2 17078 1259lem5 17081 2503lem2 17084 2503lem3 17085 4001lem1 17087 log2ub 26835 hgt750lem2 34616 3exp7 42014 3cubeslem3l 42647 resqrtvalex 43607 imsqrtvalex 43608 lhe4.4ex1a 44291 fmtno5faclem3 47555 |
| Copyright terms: Public domain | W3C validator |