MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6p2e8 Structured version   Visualization version   GIF version

Theorem 6p2e8 12319
Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
6p2e8 (6 + 2) = 8

Proof of Theorem 6p2e8
StepHypRef Expression
1 df-2 12223 . . . . 5 2 = (1 + 1)
21oveq2i 7373 . . . 4 (6 + 2) = (6 + (1 + 1))
3 6cn 12251 . . . . 5 6 ∈ ℂ
4 ax-1cn 11116 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 11172 . . . 4 ((6 + 1) + 1) = (6 + (1 + 1))
62, 5eqtr4i 2768 . . 3 (6 + 2) = ((6 + 1) + 1)
7 df-7 12228 . . . 4 7 = (6 + 1)
87oveq1i 7372 . . 3 (7 + 1) = ((6 + 1) + 1)
96, 8eqtr4i 2768 . 2 (6 + 2) = (7 + 1)
10 df-8 12229 . 2 8 = (7 + 1)
119, 10eqtr4i 2768 1 (6 + 2) = 8
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  (class class class)co 7362  1c1 11059   + caddc 11061  2c2 12215  6c6 12219  7c7 12220  8c8 12221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-1cn 11116  ax-addcl 11118  ax-addass 11123
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-iota 6453  df-fv 6509  df-ov 7365  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229
This theorem is referenced by:  6p3e9  12320  6t3e18  12730  83prm  17002  1259lem2  17011  1259lem5  17014  2503lem2  17017  2503lem3  17018  4001lem1  17020  log2ub  26315  hgt750lem2  33305  3exp7  40539  3cubeslem3l  41038  resqrtvalex  41991  imsqrtvalex  41992  lhe4.4ex1a  42683  fmtno5faclem3  45847
  Copyright terms: Public domain W3C validator