Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6p2e8 | Structured version Visualization version GIF version |
Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
6p2e8 | ⊢ (6 + 2) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 11966 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7266 | . . . 4 ⊢ (6 + 2) = (6 + (1 + 1)) |
3 | 6cn 11994 | . . . . 5 ⊢ 6 ∈ ℂ | |
4 | ax-1cn 10860 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 10916 | . . . 4 ⊢ ((6 + 1) + 1) = (6 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2769 | . . 3 ⊢ (6 + 2) = ((6 + 1) + 1) |
7 | df-7 11971 | . . . 4 ⊢ 7 = (6 + 1) | |
8 | 7 | oveq1i 7265 | . . 3 ⊢ (7 + 1) = ((6 + 1) + 1) |
9 | 6, 8 | eqtr4i 2769 | . 2 ⊢ (6 + 2) = (7 + 1) |
10 | df-8 11972 | . 2 ⊢ 8 = (7 + 1) | |
11 | 9, 10 | eqtr4i 2769 | 1 ⊢ (6 + 2) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 1c1 10803 + caddc 10805 2c2 11958 6c6 11962 7c7 11963 8c8 11964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-addcl 10862 ax-addass 10867 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 |
This theorem is referenced by: 6p3e9 12063 6t3e18 12471 83prm 16752 1259lem2 16761 1259lem5 16764 2503lem2 16767 2503lem3 16768 4001lem1 16770 log2ub 26004 hgt750lem2 32532 3exp7 39989 3cubeslem3l 40424 resqrtvalex 41142 imsqrtvalex 41143 lhe4.4ex1a 41836 fmtno5faclem3 44921 |
Copyright terms: Public domain | W3C validator |