MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6p2e8 Structured version   Visualization version   GIF version

Theorem 6p2e8 12316
Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
6p2e8 (6 + 2) = 8

Proof of Theorem 6p2e8
StepHypRef Expression
1 df-2 12225 . . . . 5 2 = (1 + 1)
21oveq2i 7380 . . . 4 (6 + 2) = (6 + (1 + 1))
3 6cn 12253 . . . . 5 6 ∈ ℂ
4 ax-1cn 11102 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 11160 . . . 4 ((6 + 1) + 1) = (6 + (1 + 1))
62, 5eqtr4i 2755 . . 3 (6 + 2) = ((6 + 1) + 1)
7 df-7 12230 . . . 4 7 = (6 + 1)
87oveq1i 7379 . . 3 (7 + 1) = ((6 + 1) + 1)
96, 8eqtr4i 2755 . 2 (6 + 2) = (7 + 1)
10 df-8 12231 . 2 8 = (7 + 1)
119, 10eqtr4i 2755 1 (6 + 2) = 8
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7369  1c1 11045   + caddc 11047  2c2 12217  6c6 12221  7c7 12222  8c8 12223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-1cn 11102  ax-addcl 11104  ax-addass 11109
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231
This theorem is referenced by:  6p3e9  12317  6t3e18  12730  83prm  17069  1259lem2  17078  1259lem5  17081  2503lem2  17084  2503lem3  17085  4001lem1  17087  log2ub  26835  hgt750lem2  34616  3exp7  42014  3cubeslem3l  42647  resqrtvalex  43607  imsqrtvalex  43608  lhe4.4ex1a  44291  fmtno5faclem3  47555
  Copyright terms: Public domain W3C validator