![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-7 | Structured version Visualization version GIF version |
Description: Define the number 7. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-7 | ⊢ 7 = (6 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c7 12272 | . 2 class 7 | |
2 | c6 12271 | . . 3 class 6 | |
3 | c1 11111 | . . 3 class 1 | |
4 | caddc 11113 | . . 3 class + | |
5 | 2, 3, 4 | co 7409 | . 2 class (6 + 1) |
6 | 1, 5 | wceq 1542 | 1 wff 7 = (6 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 7nn 12304 7re 12305 7cn 12306 7pos 12323 7m1e6 12344 6p1e7 12360 4p3e7 12366 5p2e7 12368 6p2e8 12371 6lt7 12398 7p7e14 12756 8p7e15 12762 9p7e16 12769 9p8e17 12770 7t7e49 12791 8t7e56 12797 9t7e63 12804 2exp7 17021 7prm 17044 17prm 17050 37prm 17054 317prm 17059 log2ublem2 26452 log2ublem3 26453 bclbnd 26783 bposlem8 26794 lgsdir2lem3 26830 problem4 34653 3cubeslem3r 41425 rmydioph 41753 expdiophlem2 41761 fmtno5 46225 257prm 46229 127prm 46267 7odd 46380 stgoldbwt 46444 |
Copyright terms: Public domain | W3C validator |