![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-7 | Structured version Visualization version GIF version |
Description: Define the number 7. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-7 | ⊢ 7 = (6 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c7 12353 | . 2 class 7 | |
2 | c6 12352 | . . 3 class 6 | |
3 | c1 11185 | . . 3 class 1 | |
4 | caddc 11187 | . . 3 class + | |
5 | 2, 3, 4 | co 7448 | . 2 class (6 + 1) |
6 | 1, 5 | wceq 1537 | 1 wff 7 = (6 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 7nn 12385 7re 12386 7cn 12387 7pos 12404 7m1e6 12425 6p1e7 12441 4p3e7 12447 5p2e7 12449 6p2e8 12452 6lt7 12479 7p7e14 12837 8p7e15 12843 9p7e16 12850 9p8e17 12851 7t7e49 12872 8t7e56 12878 9t7e63 12885 2exp7 17135 7prm 17158 17prm 17164 37prm 17168 317prm 17173 log2ublem2 27008 log2ublem3 27009 bclbnd 27342 bposlem8 27353 lgsdir2lem3 27389 problem4 35636 3cubeslem3r 42643 rmydioph 42971 expdiophlem2 42979 fmtno5 47431 257prm 47435 127prm 47473 7odd 47586 stgoldbwt 47650 |
Copyright terms: Public domain | W3C validator |