Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-7 | Structured version Visualization version GIF version |
Description: Define the number 7. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-7 | ⊢ 7 = (6 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c7 12042 | . 2 class 7 | |
2 | c6 12041 | . . 3 class 6 | |
3 | c1 10881 | . . 3 class 1 | |
4 | caddc 10883 | . . 3 class + | |
5 | 2, 3, 4 | co 7284 | . 2 class (6 + 1) |
6 | 1, 5 | wceq 1539 | 1 wff 7 = (6 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 7nn 12074 7re 12075 7cn 12076 7pos 12093 7m1e6 12114 6p1e7 12130 4p3e7 12136 5p2e7 12138 6p2e8 12141 6lt7 12168 7p7e14 12525 8p7e15 12531 9p7e16 12538 9p8e17 12539 7t7e49 12560 8t7e56 12566 9t7e63 12573 2exp7 16798 7prm 16821 17prm 16827 37prm 16831 317prm 16836 log2ublem2 26106 log2ublem3 26107 bclbnd 26437 bposlem8 26448 lgsdir2lem3 26484 problem4 33635 3cubeslem3r 40516 rmydioph 40843 expdiophlem2 40851 fmtno5 45020 257prm 45024 127prm 45062 7odd 45175 stgoldbwt 45239 |
Copyright terms: Public domain | W3C validator |