Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-7 | Structured version Visualization version GIF version |
Description: Define the number 7. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-7 | ⊢ 7 = (6 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c7 11963 | . 2 class 7 | |
2 | c6 11962 | . . 3 class 6 | |
3 | c1 10803 | . . 3 class 1 | |
4 | caddc 10805 | . . 3 class + | |
5 | 2, 3, 4 | co 7255 | . 2 class (6 + 1) |
6 | 1, 5 | wceq 1539 | 1 wff 7 = (6 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 7nn 11995 7re 11996 7cn 11997 7pos 12014 7m1e6 12035 6p1e7 12051 4p3e7 12057 5p2e7 12059 6p2e8 12062 6lt7 12089 7p7e14 12445 8p7e15 12451 9p7e16 12458 9p8e17 12459 7t7e49 12480 8t7e56 12486 9t7e63 12493 2exp7 16717 7prm 16740 17prm 16746 37prm 16750 317prm 16755 log2ublem2 26002 log2ublem3 26003 bclbnd 26333 bposlem8 26344 lgsdir2lem3 26380 problem4 33526 3cubeslem3r 40425 rmydioph 40752 expdiophlem2 40760 fmtno5 44897 257prm 44901 127prm 44939 7odd 45052 stgoldbwt 45116 |
Copyright terms: Public domain | W3C validator |