![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-7 | Structured version Visualization version GIF version |
Description: Define the number 7. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-7 | ⊢ 7 = (6 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c7 12323 | . 2 class 7 | |
2 | c6 12322 | . . 3 class 6 | |
3 | c1 11153 | . . 3 class 1 | |
4 | caddc 11155 | . . 3 class + | |
5 | 2, 3, 4 | co 7430 | . 2 class (6 + 1) |
6 | 1, 5 | wceq 1536 | 1 wff 7 = (6 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 7nn 12355 7re 12356 7cn 12357 7pos 12374 7m1e6 12395 6p1e7 12411 4p3e7 12417 5p2e7 12419 6p2e8 12422 6lt7 12449 7p7e14 12809 8p7e15 12815 9p7e16 12822 9p8e17 12823 7t7e49 12844 8t7e56 12850 9t7e63 12857 2exp7 17121 7prm 17144 17prm 17150 37prm 17154 317prm 17159 log2ublem2 27004 log2ublem3 27005 bclbnd 27338 bposlem8 27349 lgsdir2lem3 27385 problem4 35652 3cubeslem3r 42674 rmydioph 43002 expdiophlem2 43010 fmtno5 47481 257prm 47485 127prm 47523 7odd 47636 stgoldbwt 47700 |
Copyright terms: Public domain | W3C validator |