MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  5p3e8 Structured version   Visualization version   GIF version

Theorem 5p3e8 12450
Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
5p3e8 (5 + 3) = 8

Proof of Theorem 5p3e8
StepHypRef Expression
1 df-3 12357 . . . 4 3 = (2 + 1)
21oveq2i 7459 . . 3 (5 + 3) = (5 + (2 + 1))
3 5cn 12381 . . . 4 5 ∈ ℂ
4 2cn 12368 . . . 4 2 ∈ ℂ
5 ax-1cn 11242 . . . 4 1 ∈ ℂ
63, 4, 5addassi 11300 . . 3 ((5 + 2) + 1) = (5 + (2 + 1))
72, 6eqtr4i 2771 . 2 (5 + 3) = ((5 + 2) + 1)
8 df-8 12362 . . 3 8 = (7 + 1)
9 5p2e7 12449 . . . 4 (5 + 2) = 7
109oveq1i 7458 . . 3 ((5 + 2) + 1) = (7 + 1)
118, 10eqtr4i 2771 . 2 8 = ((5 + 2) + 1)
127, 11eqtr4i 2771 1 (5 + 3) = 8
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  (class class class)co 7448  1c1 11185   + caddc 11187  2c2 12348  3c3 12349  5c5 12351  7c7 12353  8c8 12354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-1cn 11242  ax-addcl 11244  ax-addass 11249
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362
This theorem is referenced by:  5p4e9  12451  ef01bndlem  16232  2exp16  17138  1259lem2  17179  log2ublem3  27009  log2ub  27010  bposlem8  27353  lgsdir2lem1  27387  fib6  34371  235t711  42293  ex-decpmul  42294  fmtno5lem2  47428  fmtno5lem4  47430  257prm  47435  gbpart8  47642  8gbe  47647  evengpop3  47672  ackval3012  48426
  Copyright terms: Public domain W3C validator