MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  5p3e8 Structured version   Visualization version   GIF version

Theorem 5p3e8 12397
Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
5p3e8 (5 + 3) = 8

Proof of Theorem 5p3e8
StepHypRef Expression
1 df-3 12304 . . . 4 3 = (2 + 1)
21oveq2i 7416 . . 3 (5 + 3) = (5 + (2 + 1))
3 5cn 12328 . . . 4 5 ∈ ℂ
4 2cn 12315 . . . 4 2 ∈ ℂ
5 ax-1cn 11187 . . . 4 1 ∈ ℂ
63, 4, 5addassi 11245 . . 3 ((5 + 2) + 1) = (5 + (2 + 1))
72, 6eqtr4i 2761 . 2 (5 + 3) = ((5 + 2) + 1)
8 df-8 12309 . . 3 8 = (7 + 1)
9 5p2e7 12396 . . . 4 (5 + 2) = 7
109oveq1i 7415 . . 3 ((5 + 2) + 1) = (7 + 1)
118, 10eqtr4i 2761 . 2 8 = ((5 + 2) + 1)
127, 11eqtr4i 2761 1 (5 + 3) = 8
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7405  1c1 11130   + caddc 11132  2c2 12295  3c3 12296  5c5 12298  7c7 12300  8c8 12301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-1cn 11187  ax-addcl 11189  ax-addass 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309
This theorem is referenced by:  5p4e9  12398  ef01bndlem  16202  2exp16  17110  1259lem2  17151  log2ublem3  26910  log2ub  26911  bposlem8  27254  lgsdir2lem1  27288  fib6  34438  235t711  42354  ex-decpmul  42355  fmtno5lem2  47568  fmtno5lem4  47570  257prm  47575  gbpart8  47782  8gbe  47787  evengpop3  47812  ackval3012  48672
  Copyright terms: Public domain W3C validator