Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5p3e8 | Structured version Visualization version GIF version |
Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
5p3e8 | ⊢ (5 + 3) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 11773 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 7175 | . . 3 ⊢ (5 + 3) = (5 + (2 + 1)) |
3 | 5cn 11797 | . . . 4 ⊢ 5 ∈ ℂ | |
4 | 2cn 11784 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 10666 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 10722 | . . 3 ⊢ ((5 + 2) + 1) = (5 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2764 | . 2 ⊢ (5 + 3) = ((5 + 2) + 1) |
8 | df-8 11778 | . . 3 ⊢ 8 = (7 + 1) | |
9 | 5p2e7 11865 | . . . 4 ⊢ (5 + 2) = 7 | |
10 | 9 | oveq1i 7174 | . . 3 ⊢ ((5 + 2) + 1) = (7 + 1) |
11 | 8, 10 | eqtr4i 2764 | . 2 ⊢ 8 = ((5 + 2) + 1) |
12 | 7, 11 | eqtr4i 2764 | 1 ⊢ (5 + 3) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 (class class class)co 7164 1c1 10609 + caddc 10611 2c2 11764 3c3 11765 5c5 11767 7c7 11769 8c8 11770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 ax-1cn 10666 ax-addcl 10668 ax-addass 10673 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3399 df-un 3846 df-in 3848 df-ss 3858 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-iota 6291 df-fv 6341 df-ov 7167 df-2 11772 df-3 11773 df-4 11774 df-5 11775 df-6 11776 df-7 11777 df-8 11778 |
This theorem is referenced by: 5p4e9 11867 ef01bndlem 15622 2exp16 16520 1259lem2 16561 log2ublem3 25678 log2ub 25679 bposlem8 26019 lgsdir2lem1 26053 fib6 31935 235t711 39879 ex-decpmul 39880 fmtno5lem2 44524 fmtno5lem4 44526 257prm 44531 gbpart8 44738 8gbe 44743 evengpop3 44768 ackval3012 45556 |
Copyright terms: Public domain | W3C validator |