| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5p3e8 | Structured version Visualization version GIF version | ||
| Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 5p3e8 | ⊢ (5 + 3) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12189 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7357 | . . 3 ⊢ (5 + 3) = (5 + (2 + 1)) |
| 3 | 5cn 12213 | . . . 4 ⊢ 5 ∈ ℂ | |
| 4 | 2cn 12200 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11064 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11122 | . . 3 ⊢ ((5 + 2) + 1) = (5 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2757 | . 2 ⊢ (5 + 3) = ((5 + 2) + 1) |
| 8 | df-8 12194 | . . 3 ⊢ 8 = (7 + 1) | |
| 9 | 5p2e7 12276 | . . . 4 ⊢ (5 + 2) = 7 | |
| 10 | 9 | oveq1i 7356 | . . 3 ⊢ ((5 + 2) + 1) = (7 + 1) |
| 11 | 8, 10 | eqtr4i 2757 | . 2 ⊢ 8 = ((5 + 2) + 1) |
| 12 | 7, 11 | eqtr4i 2757 | 1 ⊢ (5 + 3) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 1c1 11007 + caddc 11009 2c2 12180 3c3 12181 5c5 12183 7c7 12185 8c8 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-addcl 11066 ax-addass 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 |
| This theorem is referenced by: 5p4e9 12278 ef01bndlem 16093 2exp16 17002 1259lem2 17043 log2ublem3 26885 log2ub 26886 bposlem8 27229 lgsdir2lem1 27263 fib6 34419 235t711 42408 ex-decpmul 42409 8mod5e3 47470 fmtno5lem2 47664 fmtno5lem4 47666 257prm 47671 gbpart8 47878 8gbe 47883 evengpop3 47908 ackval3012 48803 |
| Copyright terms: Public domain | W3C validator |