Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5p3e8 | Structured version Visualization version GIF version |
Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
5p3e8 | ⊢ (5 + 3) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 12020 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 7279 | . . 3 ⊢ (5 + 3) = (5 + (2 + 1)) |
3 | 5cn 12044 | . . . 4 ⊢ 5 ∈ ℂ | |
4 | 2cn 12031 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 10913 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 10969 | . . 3 ⊢ ((5 + 2) + 1) = (5 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2770 | . 2 ⊢ (5 + 3) = ((5 + 2) + 1) |
8 | df-8 12025 | . . 3 ⊢ 8 = (7 + 1) | |
9 | 5p2e7 12112 | . . . 4 ⊢ (5 + 2) = 7 | |
10 | 9 | oveq1i 7278 | . . 3 ⊢ ((5 + 2) + 1) = (7 + 1) |
11 | 8, 10 | eqtr4i 2770 | . 2 ⊢ 8 = ((5 + 2) + 1) |
12 | 7, 11 | eqtr4i 2770 | 1 ⊢ (5 + 3) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 (class class class)co 7268 1c1 10856 + caddc 10858 2c2 12011 3c3 12012 5c5 12014 7c7 12016 8c8 12017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-1cn 10913 ax-addcl 10915 ax-addass 10920 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 |
This theorem is referenced by: 5p4e9 12114 ef01bndlem 15874 2exp16 16773 1259lem2 16814 log2ublem3 26079 log2ub 26080 bposlem8 26420 lgsdir2lem1 26454 fib6 32352 235t711 40299 ex-decpmul 40300 fmtno5lem2 44958 fmtno5lem4 44960 257prm 44965 gbpart8 45172 8gbe 45177 evengpop3 45202 ackval3012 45990 |
Copyright terms: Public domain | W3C validator |