![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 5p3e8 | Structured version Visualization version GIF version |
Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
5p3e8 | ⊢ (5 + 3) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 12357 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 7459 | . . 3 ⊢ (5 + 3) = (5 + (2 + 1)) |
3 | 5cn 12381 | . . . 4 ⊢ 5 ∈ ℂ | |
4 | 2cn 12368 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 11242 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 11300 | . . 3 ⊢ ((5 + 2) + 1) = (5 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2771 | . 2 ⊢ (5 + 3) = ((5 + 2) + 1) |
8 | df-8 12362 | . . 3 ⊢ 8 = (7 + 1) | |
9 | 5p2e7 12449 | . . . 4 ⊢ (5 + 2) = 7 | |
10 | 9 | oveq1i 7458 | . . 3 ⊢ ((5 + 2) + 1) = (7 + 1) |
11 | 8, 10 | eqtr4i 2771 | . 2 ⊢ 8 = ((5 + 2) + 1) |
12 | 7, 11 | eqtr4i 2771 | 1 ⊢ (5 + 3) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 1c1 11185 + caddc 11187 2c2 12348 3c3 12349 5c5 12351 7c7 12353 8c8 12354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-addcl 11244 ax-addass 11249 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 |
This theorem is referenced by: 5p4e9 12451 ef01bndlem 16232 2exp16 17138 1259lem2 17179 log2ublem3 27009 log2ub 27010 bposlem8 27353 lgsdir2lem1 27387 fib6 34371 235t711 42293 ex-decpmul 42294 fmtno5lem2 47428 fmtno5lem4 47430 257prm 47435 gbpart8 47642 8gbe 47647 evengpop3 47672 ackval3012 48426 |
Copyright terms: Public domain | W3C validator |