![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 5p3e8 | Structured version Visualization version GIF version |
Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
5p3e8 | ⊢ (5 + 3) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 11374 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 6888 | . . 3 ⊢ (5 + 3) = (5 + (2 + 1)) |
3 | 5cn 11400 | . . . 4 ⊢ 5 ∈ ℂ | |
4 | 2cn 11385 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 10281 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 10338 | . . 3 ⊢ ((5 + 2) + 1) = (5 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2823 | . 2 ⊢ (5 + 3) = ((5 + 2) + 1) |
8 | df-8 11379 | . . 3 ⊢ 8 = (7 + 1) | |
9 | 5p2e7 11473 | . . . 4 ⊢ (5 + 2) = 7 | |
10 | 9 | oveq1i 6887 | . . 3 ⊢ ((5 + 2) + 1) = (7 + 1) |
11 | 8, 10 | eqtr4i 2823 | . 2 ⊢ 8 = ((5 + 2) + 1) |
12 | 7, 11 | eqtr4i 2823 | 1 ⊢ (5 + 3) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 (class class class)co 6877 1c1 10224 + caddc 10226 2c2 11365 3c3 11366 5c5 11368 7c7 11370 8c8 11371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-1cn 10281 ax-addcl 10283 ax-addass 10288 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-rex 3094 df-rab 3097 df-v 3386 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-nul 4115 df-if 4277 df-sn 4368 df-pr 4370 df-op 4374 df-uni 4628 df-br 4843 df-iota 6063 df-fv 6108 df-ov 6880 df-2 11373 df-3 11374 df-4 11375 df-5 11376 df-6 11377 df-7 11378 df-8 11379 |
This theorem is referenced by: 5p4e9 11475 ef01bndlem 15247 2exp16 16122 1259lem2 16163 log2ublem3 25024 log2ub 25025 bposlem8 25365 lgsdir2lem1 25399 fib6 30978 235t711 37993 ex-decpmul 37994 fmtno5lem2 42237 fmtno5lem4 42239 257prm 42244 gbpart8 42427 8gbe 42432 evengpop3 42457 |
Copyright terms: Public domain | W3C validator |