| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5p3e8 | Structured version Visualization version GIF version | ||
| Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 5p3e8 | ⊢ (5 + 3) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12302 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7414 | . . 3 ⊢ (5 + 3) = (5 + (2 + 1)) |
| 3 | 5cn 12326 | . . . 4 ⊢ 5 ∈ ℂ | |
| 4 | 2cn 12313 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11185 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11243 | . . 3 ⊢ ((5 + 2) + 1) = (5 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2761 | . 2 ⊢ (5 + 3) = ((5 + 2) + 1) |
| 8 | df-8 12307 | . . 3 ⊢ 8 = (7 + 1) | |
| 9 | 5p2e7 12394 | . . . 4 ⊢ (5 + 2) = 7 | |
| 10 | 9 | oveq1i 7413 | . . 3 ⊢ ((5 + 2) + 1) = (7 + 1) |
| 11 | 8, 10 | eqtr4i 2761 | . 2 ⊢ 8 = ((5 + 2) + 1) |
| 12 | 7, 11 | eqtr4i 2761 | 1 ⊢ (5 + 3) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7403 1c1 11128 + caddc 11130 2c2 12293 3c3 12294 5c5 12296 7c7 12298 8c8 12299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11185 ax-addcl 11187 ax-addass 11192 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 |
| This theorem is referenced by: 5p4e9 12396 ef01bndlem 16200 2exp16 17108 1259lem2 17149 log2ublem3 26908 log2ub 26909 bposlem8 27252 lgsdir2lem1 27286 fib6 34384 235t711 42301 ex-decpmul 42302 fmtno5lem2 47516 fmtno5lem4 47518 257prm 47523 gbpart8 47730 8gbe 47735 evengpop3 47760 ackval3012 48620 |
| Copyright terms: Public domain | W3C validator |