Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5p3e8 | Structured version Visualization version GIF version |
Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
5p3e8 | ⊢ (5 + 3) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 12087 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 7318 | . . 3 ⊢ (5 + 3) = (5 + (2 + 1)) |
3 | 5cn 12111 | . . . 4 ⊢ 5 ∈ ℂ | |
4 | 2cn 12098 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 10979 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 11035 | . . 3 ⊢ ((5 + 2) + 1) = (5 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2767 | . 2 ⊢ (5 + 3) = ((5 + 2) + 1) |
8 | df-8 12092 | . . 3 ⊢ 8 = (7 + 1) | |
9 | 5p2e7 12179 | . . . 4 ⊢ (5 + 2) = 7 | |
10 | 9 | oveq1i 7317 | . . 3 ⊢ ((5 + 2) + 1) = (7 + 1) |
11 | 8, 10 | eqtr4i 2767 | . 2 ⊢ 8 = ((5 + 2) + 1) |
12 | 7, 11 | eqtr4i 2767 | 1 ⊢ (5 + 3) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7307 1c1 10922 + caddc 10924 2c2 12078 3c3 12079 5c5 12081 7c7 12083 8c8 12084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-1cn 10979 ax-addcl 10981 ax-addass 10986 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-ov 7310 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 |
This theorem is referenced by: 5p4e9 12181 ef01bndlem 15942 2exp16 16841 1259lem2 16882 log2ublem3 26147 log2ub 26148 bposlem8 26488 lgsdir2lem1 26522 fib6 32422 235t711 40514 ex-decpmul 40515 fmtno5lem2 45250 fmtno5lem4 45252 257prm 45257 gbpart8 45464 8gbe 45469 evengpop3 45494 ackval3012 46282 |
Copyright terms: Public domain | W3C validator |