| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5p3e8 | Structured version Visualization version GIF version | ||
| Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 5p3e8 | ⊢ (5 + 3) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12304 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7416 | . . 3 ⊢ (5 + 3) = (5 + (2 + 1)) |
| 3 | 5cn 12328 | . . . 4 ⊢ 5 ∈ ℂ | |
| 4 | 2cn 12315 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11187 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11245 | . . 3 ⊢ ((5 + 2) + 1) = (5 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2761 | . 2 ⊢ (5 + 3) = ((5 + 2) + 1) |
| 8 | df-8 12309 | . . 3 ⊢ 8 = (7 + 1) | |
| 9 | 5p2e7 12396 | . . . 4 ⊢ (5 + 2) = 7 | |
| 10 | 9 | oveq1i 7415 | . . 3 ⊢ ((5 + 2) + 1) = (7 + 1) |
| 11 | 8, 10 | eqtr4i 2761 | . 2 ⊢ 8 = ((5 + 2) + 1) |
| 12 | 7, 11 | eqtr4i 2761 | 1 ⊢ (5 + 3) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7405 1c1 11130 + caddc 11132 2c2 12295 3c3 12296 5c5 12298 7c7 12300 8c8 12301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11187 ax-addcl 11189 ax-addass 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 |
| This theorem is referenced by: 5p4e9 12398 ef01bndlem 16202 2exp16 17110 1259lem2 17151 log2ublem3 26910 log2ub 26911 bposlem8 27254 lgsdir2lem1 27288 fib6 34438 235t711 42354 ex-decpmul 42355 fmtno5lem2 47568 fmtno5lem4 47570 257prm 47575 gbpart8 47782 8gbe 47787 evengpop3 47812 ackval3012 48672 |
| Copyright terms: Public domain | W3C validator |