| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5p3e8 | Structured version Visualization version GIF version | ||
| Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 5p3e8 | ⊢ (5 + 3) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12257 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7401 | . . 3 ⊢ (5 + 3) = (5 + (2 + 1)) |
| 3 | 5cn 12281 | . . . 4 ⊢ 5 ∈ ℂ | |
| 4 | 2cn 12268 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11133 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11191 | . . 3 ⊢ ((5 + 2) + 1) = (5 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2756 | . 2 ⊢ (5 + 3) = ((5 + 2) + 1) |
| 8 | df-8 12262 | . . 3 ⊢ 8 = (7 + 1) | |
| 9 | 5p2e7 12344 | . . . 4 ⊢ (5 + 2) = 7 | |
| 10 | 9 | oveq1i 7400 | . . 3 ⊢ ((5 + 2) + 1) = (7 + 1) |
| 11 | 8, 10 | eqtr4i 2756 | . 2 ⊢ 8 = ((5 + 2) + 1) |
| 12 | 7, 11 | eqtr4i 2756 | 1 ⊢ (5 + 3) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 1c1 11076 + caddc 11078 2c2 12248 3c3 12249 5c5 12251 7c7 12253 8c8 12254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-addcl 11135 ax-addass 11140 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 |
| This theorem is referenced by: 5p4e9 12346 ef01bndlem 16159 2exp16 17068 1259lem2 17109 log2ublem3 26865 log2ub 26866 bposlem8 27209 lgsdir2lem1 27243 fib6 34404 235t711 42300 ex-decpmul 42301 8mod5e3 47365 fmtno5lem2 47559 fmtno5lem4 47561 257prm 47566 gbpart8 47773 8gbe 47778 evengpop3 47803 ackval3012 48685 |
| Copyright terms: Public domain | W3C validator |