![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8p8e16 | Structured version Visualization version GIF version |
Description: 8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
8p8e16 | ⊢ (8 + 8) = ;16 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn0 11726 | . 2 ⊢ 8 ∈ ℕ0 | |
2 | 7nn0 11725 | . 2 ⊢ 7 ∈ ℕ0 | |
3 | 5nn0 11723 | . 2 ⊢ 5 ∈ ℕ0 | |
4 | df-8 11503 | . 2 ⊢ 8 = (7 + 1) | |
5 | df-6 11501 | . 2 ⊢ 6 = (5 + 1) | |
6 | 8p7e15 11992 | . 2 ⊢ (8 + 7) = ;15 | |
7 | 1, 2, 3, 4, 5, 6 | 6p5lem 11977 | 1 ⊢ (8 + 8) = ;16 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 (class class class)co 6970 1c1 10330 + caddc 10332 5c5 11492 6c6 11493 7c7 11494 8c8 11495 ;cdc 11905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-om 7391 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-er 8083 df-en 8301 df-dom 8302 df-sdom 8303 df-pnf 10470 df-mnf 10471 df-ltxr 10473 df-nn 11434 df-2 11497 df-3 11498 df-4 11499 df-5 11500 df-6 11501 df-7 11502 df-8 11503 df-9 11504 df-n0 11702 df-dec 11906 |
This theorem is referenced by: 8t2e16 12022 8t7e56 12027 prmlem2 16303 163prm 16308 1259lem1 16314 1259lem5 16318 4001lem2 16325 |
Copyright terms: Public domain | W3C validator |