Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 7p1e8 | Structured version Visualization version GIF version |
Description: 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
7p1e8 | ⊢ (7 + 1) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 12042 | . 2 ⊢ 8 = (7 + 1) | |
2 | 1 | eqcomi 2747 | 1 ⊢ (7 + 1) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7275 1c1 10872 + caddc 10874 7c7 12033 8c8 12034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-8 12042 |
This theorem is referenced by: 7t4e28 12548 9t9e81 12566 s8len 14616 prmlem2 16821 83prm 16824 163prm 16826 317prm 16827 631prm 16828 2503lem2 16839 2503lem3 16840 4001lem2 16843 4001lem3 16844 4001prm 16846 hgt750lem 32631 hgt750lem2 32632 lcmineqlem 40060 3cubeslem3l 40508 3cubeslem3r 40509 resqrtvalex 41253 imsqrtvalex 41254 fmtno5lem4 45008 fmtno4nprmfac193 45026 m3prm 45044 m7prm 45052 nnsum3primesle9 45246 bgoldbtbndlem1 45257 |
Copyright terms: Public domain | W3C validator |