| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7p1e8 | Structured version Visualization version GIF version | ||
| Description: 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 7p1e8 | ⊢ (7 + 1) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12262 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 1 | eqcomi 2739 | 1 ⊢ (7 + 1) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 1c1 11076 + caddc 11078 7c7 12253 8c8 12254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-8 12262 |
| This theorem is referenced by: 7t4e28 12767 9t9e81 12785 s8len 14876 prmlem2 17097 83prm 17100 163prm 17102 317prm 17103 631prm 17104 2503lem2 17115 2503lem3 17116 4001lem2 17119 4001lem3 17120 4001prm 17122 hgt750lem 34649 hgt750lem2 34650 lcmineqlem 42047 3cubeslem3l 42681 3cubeslem3r 42682 resqrtvalex 43641 imsqrtvalex 43642 fmtno5lem4 47561 fmtno4nprmfac193 47579 m3prm 47597 m7prm 47605 nnsum3primesle9 47799 bgoldbtbndlem1 47810 |
| Copyright terms: Public domain | W3C validator |