| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7p1e8 | Structured version Visualization version GIF version | ||
| Description: 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 7p1e8 | ⊢ (7 + 1) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12197 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (7 + 1) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 1c1 11010 + caddc 11012 7c7 12188 8c8 12189 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-8 12197 |
| This theorem is referenced by: 7t4e28 12702 9t9e81 12720 s8len 14810 prmlem2 17031 83prm 17034 163prm 17036 317prm 17037 631prm 17038 2503lem2 17049 2503lem3 17050 4001lem2 17053 4001lem3 17054 4001prm 17056 hgt750lem 34625 hgt750lem2 34626 lcmineqlem 42035 3cubeslem3l 42669 3cubeslem3r 42670 resqrtvalex 43628 imsqrtvalex 43629 fmtno5lem4 47550 fmtno4nprmfac193 47568 m3prm 47586 m7prm 47594 nnsum3primesle9 47788 bgoldbtbndlem1 47799 |
| Copyright terms: Public domain | W3C validator |