| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7p1e8 | Structured version Visualization version GIF version | ||
| Description: 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 7p1e8 | ⊢ (7 + 1) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12335 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 1 | eqcomi 2746 | 1 ⊢ (7 + 1) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7431 1c1 11156 + caddc 11158 7c7 12326 8c8 12327 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 df-8 12335 |
| This theorem is referenced by: 7t4e28 12844 9t9e81 12862 s8len 14942 prmlem2 17157 83prm 17160 163prm 17162 317prm 17163 631prm 17164 2503lem2 17175 2503lem3 17176 4001lem2 17179 4001lem3 17180 4001prm 17182 hgt750lem 34666 hgt750lem2 34667 lcmineqlem 42053 3cubeslem3l 42697 3cubeslem3r 42698 resqrtvalex 43658 imsqrtvalex 43659 fmtno5lem4 47543 fmtno4nprmfac193 47561 m3prm 47579 m7prm 47587 nnsum3primesle9 47781 bgoldbtbndlem1 47792 |
| Copyright terms: Public domain | W3C validator |