| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7p1e8 | Structured version Visualization version GIF version | ||
| Description: 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 7p1e8 | ⊢ (7 + 1) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12255 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (7 + 1) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 1c1 11069 + caddc 11071 7c7 12246 8c8 12247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-8 12255 |
| This theorem is referenced by: 7t4e28 12760 9t9e81 12778 s8len 14869 prmlem2 17090 83prm 17093 163prm 17095 317prm 17096 631prm 17097 2503lem2 17108 2503lem3 17109 4001lem2 17112 4001lem3 17113 4001prm 17115 hgt750lem 34642 hgt750lem2 34643 lcmineqlem 42040 3cubeslem3l 42674 3cubeslem3r 42675 resqrtvalex 43634 imsqrtvalex 43635 fmtno5lem4 47557 fmtno4nprmfac193 47575 m3prm 47593 m7prm 47601 nnsum3primesle9 47795 bgoldbtbndlem1 47806 |
| Copyright terms: Public domain | W3C validator |