| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7p1e8 | Structured version Visualization version GIF version | ||
| Description: 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 7p1e8 | ⊢ (7 + 1) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12231 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (7 + 1) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 + caddc 11047 7c7 12222 8c8 12223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-8 12231 |
| This theorem is referenced by: 7t4e28 12736 9t9e81 12754 s8len 14845 prmlem2 17066 83prm 17069 163prm 17071 317prm 17072 631prm 17073 2503lem2 17084 2503lem3 17085 4001lem2 17088 4001lem3 17089 4001prm 17091 hgt750lem 34635 hgt750lem2 34636 lcmineqlem 42033 3cubeslem3l 42667 3cubeslem3r 42668 resqrtvalex 43627 imsqrtvalex 43628 fmtno5lem4 47550 fmtno4nprmfac193 47568 m3prm 47586 m7prm 47594 nnsum3primesle9 47788 bgoldbtbndlem1 47799 |
| Copyright terms: Public domain | W3C validator |