![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 7p1e8 | Structured version Visualization version GIF version |
Description: 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
7p1e8 | ⊢ (7 + 1) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 12362 | . 2 ⊢ 8 = (7 + 1) | |
2 | 1 | eqcomi 2749 | 1 ⊢ (7 + 1) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 1c1 11185 + caddc 11187 7c7 12353 8c8 12354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-8 12362 |
This theorem is referenced by: 7t4e28 12869 9t9e81 12887 s8len 14952 prmlem2 17167 83prm 17170 163prm 17172 317prm 17173 631prm 17174 2503lem2 17185 2503lem3 17186 4001lem2 17189 4001lem3 17190 4001prm 17192 hgt750lem 34628 hgt750lem2 34629 lcmineqlem 42009 3cubeslem3l 42642 3cubeslem3r 42643 resqrtvalex 43607 imsqrtvalex 43608 fmtno5lem4 47430 fmtno4nprmfac193 47448 m3prm 47466 m7prm 47474 nnsum3primesle9 47668 bgoldbtbndlem1 47679 |
Copyright terms: Public domain | W3C validator |