MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  7p1e8 Structured version   Visualization version   GIF version

Theorem 7p1e8 12412
Description: 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
7p1e8 (7 + 1) = 8

Proof of Theorem 7p1e8
StepHypRef Expression
1 df-8 12332 . 2 8 = (7 + 1)
21eqcomi 2743 1 (7 + 1) = 8
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  (class class class)co 7430  1c1 11153   + caddc 11155  7c7 12323  8c8 12324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1776  df-cleq 2726  df-8 12332
This theorem is referenced by:  7t4e28  12841  9t9e81  12859  s8len  14938  prmlem2  17153  83prm  17156  163prm  17158  317prm  17159  631prm  17160  2503lem2  17171  2503lem3  17172  4001lem2  17175  4001lem3  17176  4001prm  17178  hgt750lem  34644  hgt750lem2  34645  lcmineqlem  42033  3cubeslem3l  42673  3cubeslem3r  42674  resqrtvalex  43634  imsqrtvalex  43635  fmtno5lem4  47480  fmtno4nprmfac193  47498  m3prm  47516  m7prm  47524  nnsum3primesle9  47718  bgoldbtbndlem1  47729
  Copyright terms: Public domain W3C validator