| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7p1e8 | Structured version Visualization version GIF version | ||
| Description: 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 7p1e8 | ⊢ (7 + 1) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12309 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 1 | eqcomi 2744 | 1 ⊢ (7 + 1) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7405 1c1 11130 + caddc 11132 7c7 12300 8c8 12301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-8 12309 |
| This theorem is referenced by: 7t4e28 12819 9t9e81 12837 s8len 14922 prmlem2 17139 83prm 17142 163prm 17144 317prm 17145 631prm 17146 2503lem2 17157 2503lem3 17158 4001lem2 17161 4001lem3 17162 4001prm 17164 hgt750lem 34683 hgt750lem2 34684 lcmineqlem 42065 3cubeslem3l 42709 3cubeslem3r 42710 resqrtvalex 43669 imsqrtvalex 43670 fmtno5lem4 47570 fmtno4nprmfac193 47588 m3prm 47606 m7prm 47614 nnsum3primesle9 47808 bgoldbtbndlem1 47819 |
| Copyright terms: Public domain | W3C validator |