| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7p1e8 | Structured version Visualization version GIF version | ||
| Description: 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 7p1e8 | ⊢ (7 + 1) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 12194 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 1 | eqcomi 2740 | 1 ⊢ (7 + 1) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 1c1 11007 + caddc 11009 7c7 12185 8c8 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-8 12194 |
| This theorem is referenced by: 7t4e28 12699 9t9e81 12717 s8len 14810 prmlem2 17031 83prm 17034 163prm 17036 317prm 17037 631prm 17038 2503lem2 17049 2503lem3 17050 4001lem2 17053 4001lem3 17054 4001prm 17056 hgt750lem 34664 hgt750lem2 34665 lcmineqlem 42155 3cubeslem3l 42789 3cubeslem3r 42790 resqrtvalex 43748 imsqrtvalex 43749 fmtno5lem4 47666 fmtno4nprmfac193 47684 m3prm 47702 m7prm 47710 nnsum3primesle9 47904 bgoldbtbndlem1 47915 |
| Copyright terms: Public domain | W3C validator |