Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 7p1e8 | Structured version Visualization version GIF version |
Description: 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
7p1e8 | ⊢ (7 + 1) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 11972 | . 2 ⊢ 8 = (7 + 1) | |
2 | 1 | eqcomi 2747 | 1 ⊢ (7 + 1) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 1c1 10803 + caddc 10805 7c7 11963 8c8 11964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-8 11972 |
This theorem is referenced by: 7t4e28 12477 9t9e81 12495 s8len 14544 prmlem2 16749 83prm 16752 163prm 16754 317prm 16755 631prm 16756 2503lem2 16767 2503lem3 16768 4001lem2 16771 4001lem3 16772 4001prm 16774 hgt750lem 32531 hgt750lem2 32532 lcmineqlem 39988 3cubeslem3l 40424 3cubeslem3r 40425 resqrtvalex 41142 imsqrtvalex 41143 fmtno5lem4 44896 fmtno4nprmfac193 44914 m3prm 44932 m7prm 44940 nnsum3primesle9 45134 bgoldbtbndlem1 45145 |
Copyright terms: Public domain | W3C validator |