Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjim2 Structured version   Visualization version   GIF version

Theorem eldisjim2 38808
Description: Alternate form of eldisjim 38807. (Contributed by Peter Mazsa, 30-Dec-2024.)
Assertion
Ref Expression
eldisjim2 ( ElDisj 𝐴 → EqvRel ∼ 𝐴)

Proof of Theorem eldisjim2
StepHypRef Expression
1 disjim 38804 . 2 ( Disj ( E ↾ 𝐴) → EqvRel ≀ ( E ↾ 𝐴))
2 df-eldisj 38730 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
3 df-coels 38435 . . 3 𝐴 = ≀ ( E ↾ 𝐴)
43eqvreleqi 38626 . 2 ( EqvRel ∼ 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
51, 2, 43imtr4i 292 1 ( ElDisj 𝐴 → EqvRel ∼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   E cep 5557  ccnv 5658  cres 5661  ccoss 38204  ccoels 38205   EqvRel weqvrel 38221   Disj wdisjALTV 38238   ElDisj weldisj 38240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-coss 38434  df-coels 38435  df-refrel 38535  df-cnvrefrel 38550  df-symrel 38567  df-trrel 38597  df-eqvrel 38608  df-disjALTV 38728  df-eldisj 38730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator