Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjim2 Structured version   Visualization version   GIF version

Theorem eldisjim2 38767
Description: Alternate form of eldisjim 38766. (Contributed by Peter Mazsa, 30-Dec-2024.)
Assertion
Ref Expression
eldisjim2 ( ElDisj 𝐴 → EqvRel ∼ 𝐴)

Proof of Theorem eldisjim2
StepHypRef Expression
1 disjim 38763 . 2 ( Disj ( E ↾ 𝐴) → EqvRel ≀ ( E ↾ 𝐴))
2 df-eldisj 38689 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
3 df-coels 38394 . . 3 𝐴 = ≀ ( E ↾ 𝐴)
43eqvreleqi 38585 . 2 ( EqvRel ∼ 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
51, 2, 43imtr4i 292 1 ( ElDisj 𝐴 → EqvRel ∼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   E cep 5588  ccnv 5688  cres 5691  ccoss 38162  ccoels 38163   EqvRel weqvrel 38179   Disj wdisjALTV 38196   ElDisj weldisj 38198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-coss 38393  df-coels 38394  df-refrel 38494  df-cnvrefrel 38509  df-symrel 38526  df-trrel 38556  df-eqvrel 38567  df-disjALTV 38687  df-eldisj 38689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator