Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjlem19 Structured version   Visualization version   GIF version

Theorem eldisjlem19 38791
Description: Special case of disjlem19 38782 (together with membpartlem19 38792, this is former prtlem19 38859). (Contributed by Peter Mazsa, 21-Oct-2021.)
Assertion
Ref Expression
eldisjlem19 (𝐵𝑉 → ( ElDisj 𝐴 → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵𝑢) → 𝑢 = [𝐵] ∼ 𝐴)))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝑉

Proof of Theorem eldisjlem19
StepHypRef Expression
1 df-eldisj 38688 . . . . . . . 8 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
2 disjlem19 38782 . . . . . . . 8 (𝐵𝑉 → ( Disj ( E ↾ 𝐴) → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵 ∈ [𝑢]( E ↾ 𝐴)) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴))))
31, 2biimtrid 242 . . . . . . 7 (𝐵𝑉 → ( ElDisj 𝐴 → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵 ∈ [𝑢]( E ↾ 𝐴)) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴))))
43imp 406 . . . . . 6 ((𝐵𝑉 ∧ ElDisj 𝐴) → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵 ∈ [𝑢]( E ↾ 𝐴)) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴)))
54expdimp 452 . . . . 5 (((𝐵𝑉 ∧ ElDisj 𝐴) ∧ 𝑢 ∈ dom ( E ↾ 𝐴)) → (𝐵 ∈ [𝑢]( E ↾ 𝐴) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴)))
6 eccnvepres3 38267 . . . . . . . 8 (𝑢 ∈ dom ( E ↾ 𝐴) → [𝑢]( E ↾ 𝐴) = 𝑢)
76eleq2d 2824 . . . . . . 7 (𝑢 ∈ dom ( E ↾ 𝐴) → (𝐵 ∈ [𝑢]( E ↾ 𝐴) ↔ 𝐵𝑢))
86eqeq1d 2736 . . . . . . 7 (𝑢 ∈ dom ( E ↾ 𝐴) → ([𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴) ↔ 𝑢 = [𝐵] ≀ ( E ↾ 𝐴)))
97, 8imbi12d 344 . . . . . 6 (𝑢 ∈ dom ( E ↾ 𝐴) → ((𝐵 ∈ [𝑢]( E ↾ 𝐴) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴)) ↔ (𝐵𝑢𝑢 = [𝐵] ≀ ( E ↾ 𝐴))))
109adantl 481 . . . . 5 (((𝐵𝑉 ∧ ElDisj 𝐴) ∧ 𝑢 ∈ dom ( E ↾ 𝐴)) → ((𝐵 ∈ [𝑢]( E ↾ 𝐴) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴)) ↔ (𝐵𝑢𝑢 = [𝐵] ≀ ( E ↾ 𝐴))))
115, 10mpbid 232 . . . 4 (((𝐵𝑉 ∧ ElDisj 𝐴) ∧ 𝑢 ∈ dom ( E ↾ 𝐴)) → (𝐵𝑢𝑢 = [𝐵] ≀ ( E ↾ 𝐴)))
12 df-coels 38393 . . . . . 6 𝐴 = ≀ ( E ↾ 𝐴)
1312eceq2i 8785 . . . . 5 [𝐵] ∼ 𝐴 = [𝐵] ≀ ( E ↾ 𝐴)
1413eqeq2i 2747 . . . 4 (𝑢 = [𝐵] ∼ 𝐴𝑢 = [𝐵] ≀ ( E ↾ 𝐴))
1511, 14imbitrrdi 252 . . 3 (((𝐵𝑉 ∧ ElDisj 𝐴) ∧ 𝑢 ∈ dom ( E ↾ 𝐴)) → (𝐵𝑢𝑢 = [𝐵] ∼ 𝐴))
1615expimpd 453 . 2 ((𝐵𝑉 ∧ ElDisj 𝐴) → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵𝑢) → 𝑢 = [𝐵] ∼ 𝐴))
1716ex 412 1 (𝐵𝑉 → ( ElDisj 𝐴 → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵𝑢) → 𝑢 = [𝐵] ∼ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105   E cep 5587  ccnv 5687  dom cdm 5688  cres 5690  [cec 8741  ccoss 38161  ccoels 38162   Disj wdisjALTV 38195   ElDisj weldisj 38197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148  df-opab 5210  df-id 5582  df-eprel 5588  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ec 8745  df-coss 38392  df-coels 38393  df-cnvrefrel 38508  df-disjALTV 38686  df-eldisj 38688
This theorem is referenced by:  membpartlem19  38792
  Copyright terms: Public domain W3C validator