Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjlem19 Structured version   Visualization version   GIF version

Theorem eldisjlem19 38914
Description: Special case of disjlem19 38905 (together with membpartlem19 38915, this is former prtlem19 38983). (Contributed by Peter Mazsa, 21-Oct-2021.)
Assertion
Ref Expression
eldisjlem19 (𝐵𝑉 → ( ElDisj 𝐴 → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵𝑢) → 𝑢 = [𝐵] ∼ 𝐴)))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝑉

Proof of Theorem eldisjlem19
StepHypRef Expression
1 df-eldisj 38811 . . . . . . . 8 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
2 disjlem19 38905 . . . . . . . 8 (𝐵𝑉 → ( Disj ( E ↾ 𝐴) → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵 ∈ [𝑢]( E ↾ 𝐴)) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴))))
31, 2biimtrid 242 . . . . . . 7 (𝐵𝑉 → ( ElDisj 𝐴 → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵 ∈ [𝑢]( E ↾ 𝐴)) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴))))
43imp 406 . . . . . 6 ((𝐵𝑉 ∧ ElDisj 𝐴) → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵 ∈ [𝑢]( E ↾ 𝐴)) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴)))
54expdimp 452 . . . . 5 (((𝐵𝑉 ∧ ElDisj 𝐴) ∧ 𝑢 ∈ dom ( E ↾ 𝐴)) → (𝐵 ∈ [𝑢]( E ↾ 𝐴) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴)))
6 eccnvepres3 38330 . . . . . . . 8 (𝑢 ∈ dom ( E ↾ 𝐴) → [𝑢]( E ↾ 𝐴) = 𝑢)
76eleq2d 2817 . . . . . . 7 (𝑢 ∈ dom ( E ↾ 𝐴) → (𝐵 ∈ [𝑢]( E ↾ 𝐴) ↔ 𝐵𝑢))
86eqeq1d 2733 . . . . . . 7 (𝑢 ∈ dom ( E ↾ 𝐴) → ([𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴) ↔ 𝑢 = [𝐵] ≀ ( E ↾ 𝐴)))
97, 8imbi12d 344 . . . . . 6 (𝑢 ∈ dom ( E ↾ 𝐴) → ((𝐵 ∈ [𝑢]( E ↾ 𝐴) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴)) ↔ (𝐵𝑢𝑢 = [𝐵] ≀ ( E ↾ 𝐴))))
109adantl 481 . . . . 5 (((𝐵𝑉 ∧ ElDisj 𝐴) ∧ 𝑢 ∈ dom ( E ↾ 𝐴)) → ((𝐵 ∈ [𝑢]( E ↾ 𝐴) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴)) ↔ (𝐵𝑢𝑢 = [𝐵] ≀ ( E ↾ 𝐴))))
115, 10mpbid 232 . . . 4 (((𝐵𝑉 ∧ ElDisj 𝐴) ∧ 𝑢 ∈ dom ( E ↾ 𝐴)) → (𝐵𝑢𝑢 = [𝐵] ≀ ( E ↾ 𝐴)))
12 df-coels 38520 . . . . . 6 𝐴 = ≀ ( E ↾ 𝐴)
1312eceq2i 8670 . . . . 5 [𝐵] ∼ 𝐴 = [𝐵] ≀ ( E ↾ 𝐴)
1413eqeq2i 2744 . . . 4 (𝑢 = [𝐵] ∼ 𝐴𝑢 = [𝐵] ≀ ( E ↾ 𝐴))
1511, 14imbitrrdi 252 . . 3 (((𝐵𝑉 ∧ ElDisj 𝐴) ∧ 𝑢 ∈ dom ( E ↾ 𝐴)) → (𝐵𝑢𝑢 = [𝐵] ∼ 𝐴))
1615expimpd 453 . 2 ((𝐵𝑉 ∧ ElDisj 𝐴) → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵𝑢) → 𝑢 = [𝐵] ∼ 𝐴))
1716ex 412 1 (𝐵𝑉 → ( ElDisj 𝐴 → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵𝑢) → 𝑢 = [𝐵] ∼ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   E cep 5518  ccnv 5618  dom cdm 5619  cres 5621  [cec 8626  ccoss 38228  ccoels 38229   Disj wdisjALTV 38262   ElDisj weldisj 38264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8630  df-coss 38519  df-coels 38520  df-cnvrefrel 38625  df-disjALTV 38809  df-eldisj 38811
This theorem is referenced by:  membpartlem19  38915
  Copyright terms: Public domain W3C validator