Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjlem19 Structured version   Visualization version   GIF version

Theorem eldisjlem19 37024
Description: Special case of disjlem19 37015 (together with membpartlem19 37025, this is former prtlem19 37092). (Contributed by Peter Mazsa, 21-Oct-2021.)
Assertion
Ref Expression
eldisjlem19 (𝐵𝑉 → ( ElDisj 𝐴 → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵𝑢) → 𝑢 = [𝐵] ∼ 𝐴)))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝑉

Proof of Theorem eldisjlem19
StepHypRef Expression
1 df-eldisj 36921 . . . . . . . 8 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
2 disjlem19 37015 . . . . . . . 8 (𝐵𝑉 → ( Disj ( E ↾ 𝐴) → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵 ∈ [𝑢]( E ↾ 𝐴)) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴))))
31, 2biimtrid 241 . . . . . . 7 (𝐵𝑉 → ( ElDisj 𝐴 → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵 ∈ [𝑢]( E ↾ 𝐴)) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴))))
43imp 408 . . . . . 6 ((𝐵𝑉 ∧ ElDisj 𝐴) → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵 ∈ [𝑢]( E ↾ 𝐴)) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴)))
54expdimp 454 . . . . 5 (((𝐵𝑉 ∧ ElDisj 𝐴) ∧ 𝑢 ∈ dom ( E ↾ 𝐴)) → (𝐵 ∈ [𝑢]( E ↾ 𝐴) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴)))
6 eccnvepres3 36496 . . . . . . . 8 (𝑢 ∈ dom ( E ↾ 𝐴) → [𝑢]( E ↾ 𝐴) = 𝑢)
76eleq2d 2822 . . . . . . 7 (𝑢 ∈ dom ( E ↾ 𝐴) → (𝐵 ∈ [𝑢]( E ↾ 𝐴) ↔ 𝐵𝑢))
86eqeq1d 2738 . . . . . . 7 (𝑢 ∈ dom ( E ↾ 𝐴) → ([𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴) ↔ 𝑢 = [𝐵] ≀ ( E ↾ 𝐴)))
97, 8imbi12d 345 . . . . . 6 (𝑢 ∈ dom ( E ↾ 𝐴) → ((𝐵 ∈ [𝑢]( E ↾ 𝐴) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴)) ↔ (𝐵𝑢𝑢 = [𝐵] ≀ ( E ↾ 𝐴))))
109adantl 483 . . . . 5 (((𝐵𝑉 ∧ ElDisj 𝐴) ∧ 𝑢 ∈ dom ( E ↾ 𝐴)) → ((𝐵 ∈ [𝑢]( E ↾ 𝐴) → [𝑢]( E ↾ 𝐴) = [𝐵] ≀ ( E ↾ 𝐴)) ↔ (𝐵𝑢𝑢 = [𝐵] ≀ ( E ↾ 𝐴))))
115, 10mpbid 231 . . . 4 (((𝐵𝑉 ∧ ElDisj 𝐴) ∧ 𝑢 ∈ dom ( E ↾ 𝐴)) → (𝐵𝑢𝑢 = [𝐵] ≀ ( E ↾ 𝐴)))
12 df-coels 36626 . . . . . 6 𝐴 = ≀ ( E ↾ 𝐴)
1312eceq2i 8570 . . . . 5 [𝐵] ∼ 𝐴 = [𝐵] ≀ ( E ↾ 𝐴)
1413eqeq2i 2749 . . . 4 (𝑢 = [𝐵] ∼ 𝐴𝑢 = [𝐵] ≀ ( E ↾ 𝐴))
1511, 14syl6ibr 252 . . 3 (((𝐵𝑉 ∧ ElDisj 𝐴) ∧ 𝑢 ∈ dom ( E ↾ 𝐴)) → (𝐵𝑢𝑢 = [𝐵] ∼ 𝐴))
1615expimpd 455 . 2 ((𝐵𝑉 ∧ ElDisj 𝐴) → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵𝑢) → 𝑢 = [𝐵] ∼ 𝐴))
1716ex 414 1 (𝐵𝑉 → ( ElDisj 𝐴 → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵𝑢) → 𝑢 = [𝐵] ∼ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104   E cep 5505  ccnv 5599  dom cdm 5600  cres 5602  [cec 8527  ccoss 36381  ccoels 36382   Disj wdisjALTV 36415   ElDisj weldisj 36417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3331  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-id 5500  df-eprel 5506  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531  df-coss 36625  df-coels 36626  df-cnvrefrel 36741  df-disjALTV 36919  df-eldisj 36921
This theorem is referenced by:  membpartlem19  37025
  Copyright terms: Public domain W3C validator