Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjn0elb Structured version   Visualization version   GIF version

Theorem eldisjn0elb 36984
Description: Two forms of disjoint elements when the empty set is not an element of the class. (Contributed by Peter Mazsa, 31-Dec-2024.)
Assertion
Ref Expression
eldisjn0elb (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( Disj ( E ↾ 𝐴) ∧ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴))

Proof of Theorem eldisjn0elb
StepHypRef Expression
1 df-eldisj 36946 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
2 n0el3 36890 . 2 (¬ ∅ ∈ 𝐴 ↔ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴)
31, 2anbi12i 627 1 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( Disj ( E ↾ 𝐴) ∧ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1540  wcel 2105  c0 4266   E cep 5511  ccnv 5606  dom cdm 5607  cres 5609   / cqs 8546   Disj wdisjALTV 36444   ElDisj weldisj 36446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pr 5366
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5087  df-opab 5149  df-eprel 5512  df-xp 5613  df-rel 5614  df-cnv 5615  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-ec 8549  df-qs 8553  df-eldisj 36946
This theorem is referenced by:  mpet3  37075  cpet2  37076
  Copyright terms: Public domain W3C validator