Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjss Structured version   Visualization version   GIF version

Theorem eldisjss 36849
Description: Subclass theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
eldisjss (𝐴𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴))

Proof of Theorem eldisjss
StepHypRef Expression
1 ssres2 5919 . . 3 (𝐴𝐵 → ( E ↾ 𝐴) ⊆ ( E ↾ 𝐵))
21disjssd 36844 . 2 (𝐴𝐵 → ( Disj ( E ↾ 𝐵) → Disj ( E ↾ 𝐴)))
3 df-eldisj 36818 . 2 ( ElDisj 𝐵 ↔ Disj ( E ↾ 𝐵))
4 df-eldisj 36818 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
52, 3, 43imtr4g 296 1 (𝐴𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3887   E cep 5494  ccnv 5588  cres 5591   Disj wdisjALTV 36367   ElDisj weldisj 36369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-coss 36537  df-cnvrefrel 36643  df-funALTV 36793  df-disjALTV 36816  df-eldisj 36818
This theorem is referenced by:  eldisjssi  36850  eldisjssd  36851
  Copyright terms: Public domain W3C validator