Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjss Structured version   Visualization version   GIF version

Theorem eldisjss 37911
Description: Subclass theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
eldisjss (𝐴𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴))

Proof of Theorem eldisjss
StepHypRef Expression
1 ssres2 6008 . . 3 (𝐴𝐵 → ( E ↾ 𝐴) ⊆ ( E ↾ 𝐵))
21disjssd 37906 . 2 (𝐴𝐵 → ( Disj ( E ↾ 𝐵) → Disj ( E ↾ 𝐴)))
3 df-eldisj 37880 . 2 ( ElDisj 𝐵 ↔ Disj ( E ↾ 𝐵))
4 df-eldisj 37880 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
52, 3, 43imtr4g 295 1 (𝐴𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3947   E cep 5578  ccnv 5674  cres 5677   Disj wdisjALTV 37380   ElDisj weldisj 37382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-coss 37584  df-cnvrefrel 37700  df-funALTV 37855  df-disjALTV 37878  df-eldisj 37880
This theorem is referenced by:  eldisjssi  37912  eldisjssd  37913
  Copyright terms: Public domain W3C validator