![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjss | Structured version Visualization version GIF version |
Description: Subclass theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
eldisjss | ⊢ (𝐴 ⊆ 𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssres2 6029 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (◡ E ↾ 𝐴) ⊆ (◡ E ↾ 𝐵)) | |
2 | 1 | disjssd 38729 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( Disj (◡ E ↾ 𝐵) → Disj (◡ E ↾ 𝐴))) |
3 | df-eldisj 38703 | . 2 ⊢ ( ElDisj 𝐵 ↔ Disj (◡ E ↾ 𝐵)) | |
4 | df-eldisj 38703 | . 2 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3966 E cep 5592 ◡ccnv 5692 ↾ cres 5695 Disj wdisjALTV 38210 ElDisj weldisj 38212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-coss 38407 df-cnvrefrel 38523 df-funALTV 38678 df-disjALTV 38701 df-eldisj 38703 |
This theorem is referenced by: eldisjssi 38735 eldisjssd 38736 |
Copyright terms: Public domain | W3C validator |