![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjss | Structured version Visualization version GIF version |
Description: Subclass theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
eldisjss | ⊢ (𝐴 ⊆ 𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssres2 6010 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (◡ E ↾ 𝐴) ⊆ (◡ E ↾ 𝐵)) | |
2 | 1 | disjssd 38335 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( Disj (◡ E ↾ 𝐵) → Disj (◡ E ↾ 𝐴))) |
3 | df-eldisj 38309 | . 2 ⊢ ( ElDisj 𝐵 ↔ Disj (◡ E ↾ 𝐵)) | |
4 | df-eldisj 38309 | . 2 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
5 | 2, 3, 4 | 3imtr4g 295 | 1 ⊢ (𝐴 ⊆ 𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3944 E cep 5581 ◡ccnv 5677 ↾ cres 5680 Disj wdisjALTV 37813 ElDisj weldisj 37815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-coss 38013 df-cnvrefrel 38129 df-funALTV 38284 df-disjALTV 38307 df-eldisj 38309 |
This theorem is referenced by: eldisjssi 38341 eldisjssd 38342 |
Copyright terms: Public domain | W3C validator |