Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeldisj4 | Structured version Visualization version GIF version |
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
Ref | Expression |
---|---|
dfeldisj4 | ⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eldisj 36818 | . 2 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
2 | relres 5920 | . . 3 ⊢ Rel (◡ E ↾ 𝐴) | |
3 | dfdisjALTV4 36827 | . . 3 ⊢ ( Disj (◡ E ↾ 𝐴) ↔ (∀𝑥∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ∧ Rel (◡ E ↾ 𝐴))) | |
4 | 2, 3 | mpbiran2 707 | . 2 ⊢ ( Disj (◡ E ↾ 𝐴) ↔ ∀𝑥∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥) |
5 | brcnvepres 36406 | . . . . . 6 ⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑢(◡ E ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢))) | |
6 | 5 | el2v 3440 | . . . . 5 ⊢ (𝑢(◡ E ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢)) |
7 | 6 | mobii 2548 | . . . 4 ⊢ (∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢)) |
8 | df-rmo 3071 | . . . 4 ⊢ (∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢)) | |
9 | 7, 8 | bitr4i 277 | . . 3 ⊢ (∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ↔ ∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
10 | 9 | albii 1822 | . 2 ⊢ (∀𝑥∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
11 | 1, 4, 10 | 3bitri 297 | 1 ⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∀wal 1537 ∈ wcel 2106 ∃*wmo 2538 ∃*wrmo 3067 Vcvv 3432 class class class wbr 5074 E cep 5494 ◡ccnv 5588 ↾ cres 5591 Rel wrel 5594 Disj wdisjALTV 36367 ElDisj weldisj 36369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-eprel 5495 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-coss 36537 df-cnvrefrel 36643 df-disjALTV 36816 df-eldisj 36818 |
This theorem is referenced by: dfeldisj5 36832 |
Copyright terms: Public domain | W3C validator |