Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeldisj4 | Structured version Visualization version GIF version |
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
Ref | Expression |
---|---|
dfeldisj4 | ⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eldisj 36797 | . 2 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
2 | relres 5917 | . . 3 ⊢ Rel (◡ E ↾ 𝐴) | |
3 | dfdisjALTV4 36806 | . . 3 ⊢ ( Disj (◡ E ↾ 𝐴) ↔ (∀𝑥∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ∧ Rel (◡ E ↾ 𝐴))) | |
4 | 2, 3 | mpbiran2 706 | . 2 ⊢ ( Disj (◡ E ↾ 𝐴) ↔ ∀𝑥∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥) |
5 | brcnvepres 36385 | . . . . . 6 ⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑢(◡ E ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢))) | |
6 | 5 | el2v 3438 | . . . . 5 ⊢ (𝑢(◡ E ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢)) |
7 | 6 | mobii 2549 | . . . 4 ⊢ (∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢)) |
8 | df-rmo 3073 | . . . 4 ⊢ (∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢)) | |
9 | 7, 8 | bitr4i 277 | . . 3 ⊢ (∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ↔ ∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
10 | 9 | albii 1825 | . 2 ⊢ (∀𝑥∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
11 | 1, 4, 10 | 3bitri 296 | 1 ⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∀wal 1539 ∈ wcel 2109 ∃*wmo 2539 ∃*wrmo 3068 Vcvv 3430 class class class wbr 5078 E cep 5493 ◡ccnv 5587 ↾ cres 5590 Rel wrel 5593 Disj wdisjALTV 36346 ElDisj weldisj 36348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rmo 3073 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-id 5488 df-eprel 5494 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-coss 36516 df-cnvrefrel 36622 df-disjALTV 36795 df-eldisj 36797 |
This theorem is referenced by: dfeldisj5 36811 |
Copyright terms: Public domain | W3C validator |