Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeldisj4 Structured version   Visualization version   GIF version

Theorem dfeldisj4 38764
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
Assertion
Ref Expression
dfeldisj4 ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
Distinct variable group:   𝑢,𝐴,𝑥

Proof of Theorem dfeldisj4
StepHypRef Expression
1 df-eldisj 38751 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
2 relres 5954 . . 3 Rel ( E ↾ 𝐴)
3 dfdisjALTV4 38760 . . 3 ( Disj ( E ↾ 𝐴) ↔ (∀𝑥∃*𝑢 𝑢( E ↾ 𝐴)𝑥 ∧ Rel ( E ↾ 𝐴)))
42, 3mpbiran2 710 . 2 ( Disj ( E ↾ 𝐴) ↔ ∀𝑥∃*𝑢 𝑢( E ↾ 𝐴)𝑥)
5 brcnvepres 38308 . . . . . 6 ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑢( E ↾ 𝐴)𝑥 ↔ (𝑢𝐴𝑥𝑢)))
65el2v 3443 . . . . 5 (𝑢( E ↾ 𝐴)𝑥 ↔ (𝑢𝐴𝑥𝑢))
76mobii 2543 . . . 4 (∃*𝑢 𝑢( E ↾ 𝐴)𝑥 ↔ ∃*𝑢(𝑢𝐴𝑥𝑢))
8 df-rmo 3346 . . . 4 (∃*𝑢𝐴 𝑥𝑢 ↔ ∃*𝑢(𝑢𝐴𝑥𝑢))
97, 8bitr4i 278 . . 3 (∃*𝑢 𝑢( E ↾ 𝐴)𝑥 ↔ ∃*𝑢𝐴 𝑥𝑢)
109albii 1820 . 2 (∀𝑥∃*𝑢 𝑢( E ↾ 𝐴)𝑥 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
111, 4, 103bitri 297 1 ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1539  wcel 2111  ∃*wmo 2533  ∃*wrmo 3345  Vcvv 3436   class class class wbr 5091   E cep 5515  ccnv 5615  cres 5618  Rel wrel 5621   Disj wdisjALTV 38255   ElDisj weldisj 38257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-eprel 5516  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-coss 38454  df-cnvrefrel 38570  df-disjALTV 38749  df-eldisj 38751
This theorem is referenced by:  dfeldisj5  38765
  Copyright terms: Public domain W3C validator