Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeldisj4 Structured version   Visualization version   GIF version

Theorem dfeldisj4 38719
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
Assertion
Ref Expression
dfeldisj4 ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
Distinct variable group:   𝑢,𝐴,𝑥

Proof of Theorem dfeldisj4
StepHypRef Expression
1 df-eldisj 38706 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
2 relres 5979 . . 3 Rel ( E ↾ 𝐴)
3 dfdisjALTV4 38715 . . 3 ( Disj ( E ↾ 𝐴) ↔ (∀𝑥∃*𝑢 𝑢( E ↾ 𝐴)𝑥 ∧ Rel ( E ↾ 𝐴)))
42, 3mpbiran2 710 . 2 ( Disj ( E ↾ 𝐴) ↔ ∀𝑥∃*𝑢 𝑢( E ↾ 𝐴)𝑥)
5 brcnvepres 38263 . . . . . 6 ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑢( E ↾ 𝐴)𝑥 ↔ (𝑢𝐴𝑥𝑢)))
65el2v 3457 . . . . 5 (𝑢( E ↾ 𝐴)𝑥 ↔ (𝑢𝐴𝑥𝑢))
76mobii 2542 . . . 4 (∃*𝑢 𝑢( E ↾ 𝐴)𝑥 ↔ ∃*𝑢(𝑢𝐴𝑥𝑢))
8 df-rmo 3356 . . . 4 (∃*𝑢𝐴 𝑥𝑢 ↔ ∃*𝑢(𝑢𝐴𝑥𝑢))
97, 8bitr4i 278 . . 3 (∃*𝑢 𝑢( E ↾ 𝐴)𝑥 ↔ ∃*𝑢𝐴 𝑥𝑢)
109albii 1819 . 2 (∀𝑥∃*𝑢 𝑢( E ↾ 𝐴)𝑥 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
111, 4, 103bitri 297 1 ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1538  wcel 2109  ∃*wmo 2532  ∃*wrmo 3355  Vcvv 3450   class class class wbr 5110   E cep 5540  ccnv 5640  cres 5643  Rel wrel 5646   Disj wdisjALTV 38210   ElDisj weldisj 38212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-eprel 5541  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-coss 38409  df-cnvrefrel 38525  df-disjALTV 38704  df-eldisj 38706
This theorem is referenced by:  dfeldisj5  38720
  Copyright terms: Public domain W3C validator