Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeldisj4 Structured version   Visualization version   GIF version

Theorem dfeldisj4 36758
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
Assertion
Ref Expression
dfeldisj4 ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
Distinct variable group:   𝑢,𝐴,𝑥

Proof of Theorem dfeldisj4
StepHypRef Expression
1 df-eldisj 36745 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
2 relres 5909 . . 3 Rel ( E ↾ 𝐴)
3 dfdisjALTV4 36754 . . 3 ( Disj ( E ↾ 𝐴) ↔ (∀𝑥∃*𝑢 𝑢( E ↾ 𝐴)𝑥 ∧ Rel ( E ↾ 𝐴)))
42, 3mpbiran2 706 . 2 ( Disj ( E ↾ 𝐴) ↔ ∀𝑥∃*𝑢 𝑢( E ↾ 𝐴)𝑥)
5 brcnvepres 36333 . . . . . 6 ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑢( E ↾ 𝐴)𝑥 ↔ (𝑢𝐴𝑥𝑢)))
65el2v 3430 . . . . 5 (𝑢( E ↾ 𝐴)𝑥 ↔ (𝑢𝐴𝑥𝑢))
76mobii 2548 . . . 4 (∃*𝑢 𝑢( E ↾ 𝐴)𝑥 ↔ ∃*𝑢(𝑢𝐴𝑥𝑢))
8 df-rmo 3071 . . . 4 (∃*𝑢𝐴 𝑥𝑢 ↔ ∃*𝑢(𝑢𝐴𝑥𝑢))
97, 8bitr4i 277 . . 3 (∃*𝑢 𝑢( E ↾ 𝐴)𝑥 ↔ ∃*𝑢𝐴 𝑥𝑢)
109albii 1823 . 2 (∀𝑥∃*𝑢 𝑢( E ↾ 𝐴)𝑥 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
111, 4, 103bitri 296 1 ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wal 1537  wcel 2108  ∃*wmo 2538  ∃*wrmo 3066  Vcvv 3422   class class class wbr 5070   E cep 5485  ccnv 5579  cres 5582  Rel wrel 5585   Disj wdisjALTV 36294   ElDisj weldisj 36296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rmo 3071  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-coss 36464  df-cnvrefrel 36570  df-disjALTV 36743  df-eldisj 36745
This theorem is referenced by:  dfeldisj5  36759
  Copyright terms: Public domain W3C validator