| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeldisj4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
| Ref | Expression |
|---|---|
| dfeldisj4 | ⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eldisj 38706 | . 2 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
| 2 | relres 5979 | . . 3 ⊢ Rel (◡ E ↾ 𝐴) | |
| 3 | dfdisjALTV4 38715 | . . 3 ⊢ ( Disj (◡ E ↾ 𝐴) ↔ (∀𝑥∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ∧ Rel (◡ E ↾ 𝐴))) | |
| 4 | 2, 3 | mpbiran2 710 | . 2 ⊢ ( Disj (◡ E ↾ 𝐴) ↔ ∀𝑥∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥) |
| 5 | brcnvepres 38263 | . . . . . 6 ⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑢(◡ E ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢))) | |
| 6 | 5 | el2v 3457 | . . . . 5 ⊢ (𝑢(◡ E ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢)) |
| 7 | 6 | mobii 2542 | . . . 4 ⊢ (∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢)) |
| 8 | df-rmo 3356 | . . . 4 ⊢ (∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢)) | |
| 9 | 7, 8 | bitr4i 278 | . . 3 ⊢ (∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ↔ ∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
| 10 | 9 | albii 1819 | . 2 ⊢ (∀𝑥∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
| 11 | 1, 4, 10 | 3bitri 297 | 1 ⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∃*wmo 2532 ∃*wrmo 3355 Vcvv 3450 class class class wbr 5110 E cep 5540 ◡ccnv 5640 ↾ cres 5643 Rel wrel 5646 Disj wdisjALTV 38210 ElDisj weldisj 38212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-eprel 5541 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-coss 38409 df-cnvrefrel 38525 df-disjALTV 38704 df-eldisj 38706 |
| This theorem is referenced by: dfeldisj5 38720 |
| Copyright terms: Public domain | W3C validator |