Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeldisj4 Structured version   Visualization version   GIF version

Theorem dfeldisj4 36831
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
Assertion
Ref Expression
dfeldisj4 ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
Distinct variable group:   𝑢,𝐴,𝑥

Proof of Theorem dfeldisj4
StepHypRef Expression
1 df-eldisj 36818 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
2 relres 5920 . . 3 Rel ( E ↾ 𝐴)
3 dfdisjALTV4 36827 . . 3 ( Disj ( E ↾ 𝐴) ↔ (∀𝑥∃*𝑢 𝑢( E ↾ 𝐴)𝑥 ∧ Rel ( E ↾ 𝐴)))
42, 3mpbiran2 707 . 2 ( Disj ( E ↾ 𝐴) ↔ ∀𝑥∃*𝑢 𝑢( E ↾ 𝐴)𝑥)
5 brcnvepres 36406 . . . . . 6 ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑢( E ↾ 𝐴)𝑥 ↔ (𝑢𝐴𝑥𝑢)))
65el2v 3440 . . . . 5 (𝑢( E ↾ 𝐴)𝑥 ↔ (𝑢𝐴𝑥𝑢))
76mobii 2548 . . . 4 (∃*𝑢 𝑢( E ↾ 𝐴)𝑥 ↔ ∃*𝑢(𝑢𝐴𝑥𝑢))
8 df-rmo 3071 . . . 4 (∃*𝑢𝐴 𝑥𝑢 ↔ ∃*𝑢(𝑢𝐴𝑥𝑢))
97, 8bitr4i 277 . . 3 (∃*𝑢 𝑢( E ↾ 𝐴)𝑥 ↔ ∃*𝑢𝐴 𝑥𝑢)
109albii 1822 . 2 (∀𝑥∃*𝑢 𝑢( E ↾ 𝐴)𝑥 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
111, 4, 103bitri 297 1 ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wal 1537  wcel 2106  ∃*wmo 2538  ∃*wrmo 3067  Vcvv 3432   class class class wbr 5074   E cep 5494  ccnv 5588  cres 5591  Rel wrel 5594   Disj wdisjALTV 36367   ElDisj weldisj 36369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-eprel 5495  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-coss 36537  df-cnvrefrel 36643  df-disjALTV 36816  df-eldisj 36818
This theorem is referenced by:  dfeldisj5  36832
  Copyright terms: Public domain W3C validator