![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeldisj4 | Structured version Visualization version GIF version |
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
Ref | Expression |
---|---|
dfeldisj4 | ⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eldisj 37572 | . 2 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
2 | relres 6010 | . . 3 ⊢ Rel (◡ E ↾ 𝐴) | |
3 | dfdisjALTV4 37581 | . . 3 ⊢ ( Disj (◡ E ↾ 𝐴) ↔ (∀𝑥∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ∧ Rel (◡ E ↾ 𝐴))) | |
4 | 2, 3 | mpbiran2 708 | . 2 ⊢ ( Disj (◡ E ↾ 𝐴) ↔ ∀𝑥∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥) |
5 | brcnvepres 37130 | . . . . . 6 ⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑢(◡ E ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢))) | |
6 | 5 | el2v 3482 | . . . . 5 ⊢ (𝑢(◡ E ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢)) |
7 | 6 | mobii 2542 | . . . 4 ⊢ (∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢)) |
8 | df-rmo 3376 | . . . 4 ⊢ (∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢)) | |
9 | 7, 8 | bitr4i 277 | . . 3 ⊢ (∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ↔ ∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
10 | 9 | albii 1821 | . 2 ⊢ (∀𝑥∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
11 | 1, 4, 10 | 3bitri 296 | 1 ⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∀wal 1539 ∈ wcel 2106 ∃*wmo 2532 ∃*wrmo 3375 Vcvv 3474 class class class wbr 5148 E cep 5579 ◡ccnv 5675 ↾ cres 5678 Rel wrel 5681 Disj wdisjALTV 37072 ElDisj weldisj 37074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-eprel 5580 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-coss 37276 df-cnvrefrel 37392 df-disjALTV 37570 df-eldisj 37572 |
This theorem is referenced by: dfeldisj5 37586 |
Copyright terms: Public domain | W3C validator |