![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjn0el | Structured version Visualization version GIF version |
Description: Special case of disjdmqseq 38333 (perhaps this is the closest theorem to the former prter2 38409). (Contributed by Peter Mazsa, 26-Sep-2021.) |
Ref | Expression |
---|---|
eldisjn0el | ⊢ ( ElDisj 𝐴 → (¬ ∅ ∈ 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjdmqseq 38333 | . 2 ⊢ ( Disj (◡ E ↾ 𝐴) → ((dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴 ↔ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴)) | |
2 | df-eldisj 38235 | . 2 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
3 | n0el3 38179 | . . 3 ⊢ (¬ ∅ ∈ 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) | |
4 | dmqs1cosscnvepreseq 38190 | . . . 4 ⊢ ((dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) | |
5 | 4 | bicomi 223 | . . 3 ⊢ ((∪ 𝐴 / ∼ 𝐴) = 𝐴 ↔ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) |
6 | 3, 5 | bibi12i 338 | . 2 ⊢ ((¬ ∅ ∈ 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) ↔ ((dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴 ↔ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴)) |
7 | 1, 2, 6 | 3imtr4i 291 | 1 ⊢ ( ElDisj 𝐴 → (¬ ∅ ∈ 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∅c0 4318 ∪ cuni 4903 E cep 5575 ◡ccnv 5671 dom cdm 5672 ↾ cres 5674 / cqs 8722 ≀ ccoss 37705 ∼ ccoels 37706 Disj wdisjALTV 37739 ElDisj weldisj 37741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-id 5570 df-eprel 5576 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ec 8725 df-qs 8729 df-coss 37939 df-coels 37940 df-cnvrefrel 38055 df-disjALTV 38233 df-eldisj 38235 |
This theorem is referenced by: mainer 38362 |
Copyright terms: Public domain | W3C validator |