| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjn0el | Structured version Visualization version GIF version | ||
| Description: Special case of disjdmqseq 38769 (perhaps this is the closest theorem to the former prter2 38845). (Contributed by Peter Mazsa, 26-Sep-2021.) |
| Ref | Expression |
|---|---|
| eldisjn0el | ⊢ ( ElDisj 𝐴 → (¬ ∅ ∈ 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjdmqseq 38769 | . 2 ⊢ ( Disj (◡ E ↾ 𝐴) → ((dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴 ↔ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴)) | |
| 2 | df-eldisj 38671 | . 2 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
| 3 | n0el3 38615 | . . 3 ⊢ (¬ ∅ ∈ 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) | |
| 4 | dmqs1cosscnvepreseq 38626 | . . . 4 ⊢ ((dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) | |
| 5 | 4 | bicomi 224 | . . 3 ⊢ ((∪ 𝐴 / ∼ 𝐴) = 𝐴 ↔ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) |
| 6 | 3, 5 | bibi12i 339 | . 2 ⊢ ((¬ ∅ ∈ 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) ↔ ((dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴 ↔ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴)) |
| 7 | 1, 2, 6 | 3imtr4i 292 | 1 ⊢ ( ElDisj 𝐴 → (¬ ∅ ∈ 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∅c0 4308 ∪ cuni 4883 E cep 5552 ◡ccnv 5653 dom cdm 5654 ↾ cres 5656 / cqs 8716 ≀ ccoss 38145 ∼ ccoels 38146 Disj wdisjALTV 38179 ElDisj weldisj 38181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-eprel 5553 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ec 8719 df-qs 8723 df-coss 38375 df-coels 38376 df-cnvrefrel 38491 df-disjALTV 38669 df-eldisj 38671 |
| This theorem is referenced by: mainer 38798 |
| Copyright terms: Public domain | W3C validator |